ﻻ يوجد ملخص باللغة العربية
We present efficient angle-dependent low-energy Hamiltonians to describe the properties of the twisted bilayer graphene (tBLG) heterostructure, based on {it ab initio} calculations of mechanical relxation and electronic structure. The angle-dependent relaxed atomic geometry is determined by continuum elasticity theory, which induces both in-plane and out-of-plane deformations in the stacked graphene layers. The electronic properties corresponding to the deformed geometry are derived from a Wannier transformation to local interactions obtained from Density Functional Theory calculations. With these {it ab initio} tight-binding Hamiltonians of the relaxed heterostructure, the low-energy effective theories are derived from the projections near Dirac cones at K valleys. For twist angles ranging from 0.7$^circ$ to 4$^circ$, we extract both the intra-layer pseudo-gauge fields and the inter-layer coupling terms in the low-energy Hamiltonians, which extend the conventional low-energy continuum models. We further include the momentum dependent inter-layer scattering terms which give rise to the particle-hole asymmetric features of the electronic structure. Our model Hamiltonians can serve as a starting point for formulating physically meaningful, accurate interacting electron theories.
A computationally efficient workflow for obtaining low-energy tight-binding Hamiltonians for twisted bilayer graphene, obeying both crystal and time-reversal symmetries, is presented in this work. The Hamiltonians at the first magic angle are generat
Experiments on bilayer graphene unveiled a fascinating realization of stacking disorder where triangular domains with well-defined Bernal stacking are delimited by a hexagonal network of strain solitons. Here we show by means of numerical simulations
Close to a magical angle, twisted bilayer graphene (TBLG) systems exhibit isolated flat electronic bands and, accordingly, strong electron localization. TBLGs have hence been ideal platforms to explore superconductivity, correlated insulating states,
Van der Waals (vdW) heterostructures ---formed by stacking or growing two-dimensional (2D) crystals on top of each other--- have emerged as a new promising route to tailor and engineer the properties of 2D materials. Twisted bilayer graphene (tBLG),
Angle disorder is an intrinsic feature of twisted bilayer graphene and other moire materials. Here, we discuss electron transport in twisted bilayer graphene in the presence of angle disorder. We compute the local density of states and the Landauer-B