ترغب بنشر مسار تعليمي؟ اضغط هنا

Study of the effect of external noise pickups on the performance of a cryogenic bolometer

65   0   0.0 ( 0 )
 نشر من قبل Abhijit Garai
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper reports the detailed noise characterization, investigation of various noise sources and its mitigation to improve the performance of a cryogenic bolometer detector. The noise spectrum has been measured for a sapphire bolometer test setup with indigenously developed NTD Ge sensor in the CFDR system at Mumbai. The effect of external noise, arising either from ground loops in the system or from the diagnostic and control electronics of the cryostat, on the performance of a cryogenic bolometer is assessed. A systematic comparison of the influence of different noise pickups on the bolometer resolution is also presented. The best-achieved resolution at 15mK is ~15 keV for heater pulses and appears to be mainly limited by the noise due to the pulse tube cryocooler.



قيم البحث

اقرأ أيضاً

The facilities designed to study collisions of relativistic nuclei, such as the MPD at NICA (JINR), STAR at RHIC (BNL), ALICE, ATLAS and CMS at the LHC (CERN), are equipped with pairs of hadronic Zero Degree Calorimeters (ZDC) to detect forward nucle ons at the both sides of the interaction point and estimate the collision centrality. The energy deposited in a ZDC fluctuates from one event to another, but on average it is proportional to the number of absorbed nucleons. Forward nucleons are also emitted in electromagnetic dissociation (EMD) of nuclei in ultraperipheral collisions, and they are used to monitor the luminosity. As known, ZDC energy spectra are specific to each facility, because they are affected by the ZDC acceptance, and the ZDC energy resolution depends on the beam energy. In this work a simple combinatorial model leading to handy formulas has been proposed to connect the numbers of emitted and detected forward nucleons taking into account a limited ZDC acceptance. The ZDC energy spectra from the EMD with the emission of one, two, three and four forward neutrons and protons have been modeled for collision energies of NICA and the LHC. The case of a rather small ZDC acceptance has been investigated and a possibility to measure the inclusive nucleon emission cross section has been demonstrated.
The Cryogenic Underground Observatory for Rare Events (CUORE) is a ton-scale cryogenic experiment designed to search for neutrinoless double-beta decay of $^{130}$Te and other rare events. The CUORE detector consists of 988 TeO$_2$ bolometers operate d underground at 10 mK in a dilution refrigerator at the Laboratori Nazionali del Gran Sasso. Candidate events are identified through a precise measurement of their energy. The absolute energy response of the detectors is established by the regular calibration of each individual bolometer using gamma sources. The close-packed configuration of the CUORE bolometer array combined with the extensive shielding surrounding the detectors requires the placement of calibration sources within the array itself. The CUORE Detector Calibration System is designed to insert radioactive sources into and remove them from the cryostat while respecting the stringent heat load, radiopurity, and operational requirements of the experiment. This paper describes the design, commissioning, and performance of this novel source calibration deployment system for ultra-low-temperature environments.
In a neutrinoless double-beta decay ($0 ubetabeta$) experiment, energy resolution is important to distinguish between $0 ubetabeta$ and background events. CAlcium fluoride for studies of Neutrino and Dark matters by Low Energy Spectrometer (CANDLES) discerns the $0 ubetabeta$ of $^{48}$Ca using a CaF$_2$ scintillator as the detector and source. Photomultiplier tubes (PMTs) collect scintillation photons. At the Q-value of $^{48}$Ca, the current energy resolution (2.6%) exceeds the ideal statistical fluctuation of the number of photoelectrons (1.6%). Because of CaF$_2$s long decay constant of 1000 ns, a signal integration within 4000 ns is used to calculate the energy. The baseline fluctuation ($sigma_{baseline}$) is accumulated in the signal integration, thus degrading the energy resolution. This paper studies $sigma_{baseline}$ in the CANDLES detector, which severely degrades the resolution by 1% at the Q-value of $^{48}$Ca. To avoid $sigma_{rm baseline}$, photon counting can be used to obtain the number of photoelectrons in each PMT; however, a significant photoelectron signal overlapping probability in each PMT causes missing photoelectrons in counting and reduces the energy resolution. Partial photon counting reduces $sigma_{baseline}$ and minimizes photoelectron loss. We obtain improved energy resolutions of 4.5-4.0% at 1460.8 keV ($gamma$-ray of $^{40}$K), and 3.3-2.9% at 2614.5 keV ($gamma$-ray of $^{208}$Tl). The energy resolution at the Q-value is estimated to be improved from 2.6% to 2.2%, and the detector sensitivity for the $0 ubetabeta$ half-life of $^{48}$Ca can be improved by 1.09 times.
CUORE-0 is a cryogenic detector that uses an array of tellurium dioxide bolometers to search for neutrinoless double-beta decay of ^{130}Te. We present the first data analysis with 7.1 kg y of total TeO_2 exposure focusing on background measurements and energy resolution. The background rates in the neutrinoless double-beta decay region of interest (2.47 to 2.57 MeV) and in the {alpha} background-dominated region (2.70 to 3.90 MeV) have been measured to be 0.071 pm 0.011 and 0.019 pm 0.002 counts/keV/kg/y, respectively. The latter result represents a factor of 6 improvement from a predecessor experiment, Cuoricino. The results verify our understanding of the background sources in CUORE-0, which is the basis of extrapolations to the full CUORE detector. The obtained energy resolution (full width at half maximum) in the region of interest is 5.7 keV. Based on the measured background rate and energy resolution in the region of interest, CUORE-0 half-life sensitivity is expected to surpass the observed lower bound of Cuoricino with one year of live time.
ARGONTUBE is a liquid argon time projection chamber (TPC) with an electron drift length of up to 5 m equipped with cryogenic charge-sensitive preamplifiers. In this work, we present results on its performance including a comparison of the new cryogen ic charge-sensitive preamplifiers with the previously used room-temperature-operated charge preamplifiers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا