ﻻ يوجد ملخص باللغة العربية
In this work we present a tight-binding model that allows to describe with a minimal amount of parameters the band structure of exciton-polariton lattices. This model based on $s$ and $p$ non-orthogonal photonic orbitals faithfully reproduces experimental results reported for polariton graphene ribbons. We analyze in particular the influence of the non-orthogonality, the inter-orbitals interaction and the photonic spin-orbit coupling on the polarization and dispersion of bulk bands and edge states.
Artificial graphene consisting of honeycomb lattices other than the atomic layer of carbon has been shown to exhibit electronic properties similar to real graphene. Here, we reverse the argument to show that transport properties of real graphene can
We propose atomic films of n-doped $gamma$-InSe as a platform for intersubband optics in the infrared (IR) and far infrared (FIR) range, coupled to out-of-plane polarized light. Depending on the film thickness (number of layers) of the InSe film thes
We study coherent dynamics of tight-binding systems interacting with static and oscillating external fields. We consider Bloch oscillations and Wannier-Stark localization caused by dc fields, and compare these effects to dynamic localization that occ
We present an accurate textit{ab-initio} tight-binding hamiltonian for the transition-metal dichalcogenides, MoS$_2$, MoSe$_2$, WS$_2$, WSe$_2$, with a minimal basis (the textit{d} orbitals for the metal atoms and textit{p} orbitals for the chalcogen
The experimental study of edge states in atomically-thin layered materials remains a challenge due to the difficult control of the geometry of the sample terminations, the stability of dangling bonds and the need to measure local properties. In the c