ﻻ يوجد ملخص باللغة العربية
In search of better thermoelectric materials, we have systematically investigated the thermoelectric properties of a 122 Zintl phase compound EuCd$_{2}$As$_{2}$ using textit{ab-initio} density functional theory and semi-classical Boltzmann transport theory within constant relaxation time approximation. Considering the ground state magnetic structure which is A-type antiferromagnetic (A-AFM) and non-magnetic (NM) structure, we evaluated various thermoelectric parameters such as Seebeck coefficient, electrical and thermal conductivity, power factor and figure of merit (ZT) as function temperature as well as chemical potential. Almost all thermoelectric parameters show anisotropy between $xx$ and $zz$ directions which is stronger in case of A-AFM than in NM. Both A-AFM and NM phase of the compound display better thermoelectric performance when hole doped. We observed high Seebeck coefficient and low electronic thermal conductivity in A-AFM phase along $zz$ direction. The remarkably high ZT of 1.79 at 500 K in A-AFM phase and ZT$sim$1 in NM phase suggest that EuCd$_{2}$As$_{2}$ is a viable thermoelectric material when p-doped.
We have combined the Boltzmann transport equation with an {it ab initio} approach to compute the thermoelectric coefficients of semiconductors. Electron-phonon, ionized impurity, and electron-plasmon scattering rates have been taken into account. The
Magnesium alanate Mg(AlH4)2 has recently raised interest as a potential material for hydrogen storage. We apply ab initio calculations to characterize structural, electronic and energetic properties of Mg(AlH4)2. Density functional theory calculation
Electronic structure of FeGa3 has been studied using experiments and ab-initio calculations. Magnetization measurements show that FeGa3 is inherently diamagnetic in nature. Our studies indicate that the previously reported magnetic moment on the Fe a
We study the Raman spectrum of CrI$_3$, a material that exhibits magnetism in a single-layer. We employ first-principles calculations within density functional theory to determine the effects of polarization, strain, and incident angle on the phonon
We have investigated the initial growth of Fe on GaAs(110) by means of density functional theory. In contrast to the conventionally used (001)-surface the (110)-surface does not reconstruct. Therefore, a flat interface and small diffusion can be expe