ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust utility maximization under model uncertainty via a penalization approach

182   0   0.0 ( 0 )
 نشر من قبل Wei Ning
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper addresses the problem of utility maximization under uncertain parameters. In contrast with the classical approach, where the parameters of the model evolve freely within a given range, we constrain them via a penalty function. We show that this robust optimization process can be interpreted as a two-player zero-sum stochastic differential game. We prove that the value function satisfies the Dynamic Programming Principle and that it is the unique viscosity solution of an associated Hamilton-Jacobi-Bellman-Isaacs equation. We test this robust algorithm on real market data. The results show that robust portfolios generally have higher expected utilities and are more stable under strong market downturns. To solve for the value function, we derive an analytical solution in the logarithmic utility case and obtain accurate numerical approximations in the general case by three methods: finite difference method, Monte Carlo simulation, and Generative Adversarial Networks.



قيم البحث

اقرأ أيضاً

Most existing work uses dual decomposition and subgradient methods to solve Network Utility Maximization (NUM) problems in a distributed manner, which suffer from slow rate of convergence properties. This work develops an alternative distributed Newt on-type fast converging algorithm for solving network utility maximization problems with self-concordant utility functions. By using novel matrix splitting techniques, both primal and dual updates for the Newton step can be computed using iterative schemes in a decentralized manner with limited information exchange. Similarly, the stepsize can be obtained via an iterative consensus-based averaging scheme. We show that even when the Newton direction and the stepsize in our method are computed within some error (due to finite truncation of the iterative schemes), the resulting objective function value still converges superlinearly to an explicitly characterized error neighborhood. Simulation results demonstrate significant convergence rate improvement of our algorithm relative to the existing subgradient methods based on dual decomposition.
Oxygen optimal distribution is one of the most important energy management problems in the modern iron and steel industry. Normally, the supply of the energy generation system is determined by the energy demand of manufacturing processes. However, th e balance between supply and demand fluctuates frequently due to the uncertainty arising in manufacturing processes. In this paper, we developed an oxygen optimal distribution model considering uncertain demands and proposed a two-stage robust optimization (TSRO) with a budget-based uncertainty set that protects the initial distribution decisions with low conservatism. The main goal of the TSRO model is to make wait-and-see decisions maximizing production profits and make here-and-now decisions minimizing operational stability and surplus/shortage penalty. To represent the uncertainty set of energy demands, we developed a Gaussian process (GP)-based time series model to forecast the energy demands of continuous processes and a capacity-constrained scheduling model to generate multi-scenario energy demands of discrete processes. We carried out extensive computational studies on TSRO and its components using well-synthetic instances from historical data. The results of model validation and analysis are promising and demonstrate our approach is adapted to solve industrial cases under uncertainty.
We consider the Network Utility Maximization (NUM) problem for wireless networks in the presence of arbitrary types of flows, including unicast, broadcast, multicast, and anycast traffic. Building upon the recent framework of a universal control poli cy (UMW), we design a utility optimal cross-layer admission control, routing and scheduling policy, called UMW+. The UMW+ policy takes packet level actions based on a precedence-relaxed virtual network. Using Lyapunov optimization techniques, we show that UMW+ maximizes network utility, while simultaneously keeping the physical queues in the network stable. Extensive simulation results validate the performance of UMW+; demonstrating both optimal utility performance and bounded average queue occupancy. Moreover, we establish a precise one-to-one correspondence between the dynamics of the virtual queues under the UMW+ policy, and the dynamics of the dual variables of an associated offline NUM program, under a subgradient algorithm. This correspondence sheds further insight into our understanding of UMW+.
To ensure a successful bid while maximizing of profits, generation companies (GENCOs) need a self-scheduling strategy that can cope with a variety of scenarios. So distributionally robust opti-mization (DRO) is a good choice because that it can provi de an adjustable self-scheduling strategy for GENCOs in the uncertain environment, which can well balance robustness and economics compared to strategies derived from robust optimization (RO) and stochastic programming (SO). In this paper, a novel mo-ment-based DRO model with conditional value-at-risk (CVaR) is proposed to solve the self-scheduling problem under electricity price uncertainty. Such DRO models are usually translated into semi-definite programming (SDP) for solution, however, solving large-scale SDP needs a lot of computational time and resources. For this shortcoming, two effective approximate models are pro-posed: one approximate model based on vector splitting and an-other based on alternate direction multiplier method (ADMM), both can greatly reduce the calculation time and resources, and the second approximate model only needs the information of the current area in each step of the solution and thus information private is guaranteed. Simulations of three IEEE test systems are conducted to demonstrate the correctness and effectiveness of the proposed DRO model and two approximate models.
215 - Jia Liu , Zhiping Chen , Huifu Xu 2021
In this paper, we consider a multistage expected utility maximization problem where the decision makers utility function at each stage depends on historical data and the information on the true utility function is incomplete. To mitigate the risk ari sing from ambiguity of the true utility, we propose a maximin robust model where the optimal policy is based on the worst sequence of utility functions from an ambiguity set constructed with partially available information about the decision makers preferences. We then show that the multistage maximin problem is time consistent when the utility functions are state-dependent and demonstrate with a counter example that the time consistency may not be retained when the utility functions are state-independent. With the time consistency, we show the maximin problem can be solved by a recursive formula whereby a one-stage maximin problem is solved at each stage beginning from the last stage. Moreover, we propose two approaches to construct the ambiguity set: a pairwise comparison approach and a $zeta$-ball approach where a ball of utility functions centered at a nominal utility function under $zeta$-metric is considered. To overcome the difficulty arising from solving the infinite dimensional optimization problem in computation of the worst-case expected utility value, we propose piecewise linear approximation of the utility functions and derive error bound for the approximation under moderate conditions. Finally we develop a scenario tree-based computational scheme for solving the multistage preference robust optimization model and report some preliminary numerical results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا