ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetization Transfer in Magnetic Resonance Fingerprinting

66   0   0.0 ( 0 )
 نشر من قبل Martijn Cloos
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Purpose: To study the effects of magnetization transfer (MT, in which a semisolid spin pool interacts with the free pool), in the context of magnetic resonance fingerprinting (MRF). Methods: Simulations and phantom experiments were performed to study the impact of MT on the MRF signal and its potential influence on T1 and T2 estimation. Subsequently, an MRF sequence implementing off-resonance MT pulses and a dictionary with an MT dimension by incorporating a two-pool model were used to estimate the fractional pool size in addition to the B1+, T1, and T2 values. The proposed method was evaluated in the human brain. Results: Simulations and phantom experiments showed that an MRF signal obtained from a cross-linked bovine serum sample is influenced by MT. Using a dictionary based on an MT model, a better match between simulations and acquired MR signals can be obtained (NRMSE 1.3% versus 4.7%). Adding off-resonance MT pulses can improve the differentiation of MT from T1 and T2. In-vivo results showed that MT affects the MRF signals from white matter (fractional pool-size ~16%) and gray matter (fractional pool-size ~10%). Furthermore, longer T1 (~1060 ms versus ~860 ms) and T2 values (~47 ms versus ~35 ms) can be observed in white matter if MT is accounted for. Conclusion: Our experiments demonstrated a potential influence of MT on the quantification of T1 and T2 with MRF. A model that encompasses MT effects can improve the accuracy of estimated relaxation parameters and allows quantification of the fractional pool size.

قيم البحث

اقرأ أيضاً

149 - Elisabeth Hoppe 2019
Recently, Magnetic Resonance Fingerprinting (MRF) was proposed as a quantitative imaging technique for the simultaneous acquisition of tissue parameters such as relaxation times $T_1$ and $T_2$. Although the acquisition is highly accelerated, the sta te-of-the-art reconstruction suffers from long computation times: Template matching methods are used to find the most similar signal to the measured one by comparing it to pre-simulated signals of possible parameter combinations in a discretized dictionary. Deep learning approaches can overcome this limitation, by providing the direct mapping from the measured signal to the underlying parameters by one forward pass through a network. In this work, we propose a Recurrent Neural Network (RNN) architecture in combination with a novel quantile layer. RNNs are well suited for the processing of time-dependent signals and the quantile layer helps to overcome the noisy outliers by considering the spatial neighbors of the signal. We evaluate our approach using in-vivo data from multiple brain slices and several volunteers, running various experiments. We show that the RNN approach with small patches of complex-valued input signals in combination with a quantile layer outperforms other architectures, e.g. previously proposed CNNs for the MRF reconstruction reducing the error in $T_1$ and $T_2$ by more than 80%.
Purpose: Magnetization transfer (MT) and inhomogeneous MT (ihMT) contrasts are used in MRI to provide information about macromolecular tissue content. In particular, MT is sensitive to macromolecules and ihMT appears to be specific to myelinated tiss ue. This study proposes a technique to characterize MT and ihMT properties from a single acquisition, producing both semiquantitative contrast ratios, and quantitative parameter maps. Theory and Methods: Building upon previous work that uses multiband radiofrequency (RF) pulses to efficiently generate ihMT contrast, we propose a cyclic-steady-state approach that cycles between multiband and single-band pulses to boost the achieved contrast. Resultant time-variable signals are reminiscent of a magnetic resonance fingerprinting (MRF) acquisition, except that the signal fluctuations are entirely mediated by magnetization transfer effects. A dictionary-based low-rank inversion method is used to reconstruct the resulting images and to produce both semiquantitative MT ratio (MTR) and ihMT ratio (ihMTR) maps, as well as quantitative parameter estimates corresponding to an ihMT tissue model. Results: Phantom and in vivo brain data acquired at 1.5T demonstrate the expected contrast trends, with ihMTR maps showing contrast more specific to white matter (WM), as has been reported by others. Quantitative estimation of semisolid fraction and dipolar T1 was also possible and yielded measurements consistent with literature values in the brain. Conclusions: By cycling between multiband and single-band pulses, an entirely magnetization transfer mediated fingerprinting method was demonstrated. This proof-of-concept approach can be used to generate semiquantitative maps and quantitatively estimate some macromolecular specific tissue parameters.
Magnetic resonance fingerprinting (MRF) provides a unique concept for simultaneous and fast acquisition of multiple quantitative MR parameters. Despite acquisition efficiency, adoption of MRF into the clinics is hindered by its dictionary matching-ba sed reconstruction, which is computationally demanding and lacks scalability. Here, we propose a convolutional neural network-based reconstruction, which enables both accurate and fast reconstruction of parametric maps, and is adaptable based on the needs of spatial regularization and the capacity for the reconstruction. We evaluated the method using MRF T1-FF, an MRF sequence for T1 relaxation time of water (T1H2O) and fat fraction (FF) mapping. We demonstrate the methods performance on a highly heterogeneous dataset consisting of 164 patients with various neuromuscular diseases imaged at thighs and legs. We empirically show the benefit of incorporating spatial regularization during the reconstruction and demonstrate that the method learns meaningful features from MR physics perspective. Further, we investigate the ability of the method to handle highly heterogeneous morphometric variations and its generalization to anatomical regions unseen during training. The obtained results outperform the state-of-the-art in deep learning-based MRF reconstruction. The method achieved normalized root mean squared errors of 0.048 $pm$ 0.011 for T1H2O maps and 0.027 $pm$ 0.004 for FF maps when compared to the dictionary matching in a test set of 50 patients. Coupled with fast MRF sequences, the proposed method has the potential of enabling multiparametric MR imaging in clinically feasible time.
Magnetic resonance Fingerprinting (MRF) is a relatively new multi-parametric quantitative imaging method that involves a two-step process: (i) reconstructing a series of time frames from highly-undersampled non-Cartesian spiral k-space data and (ii) pattern matching using the time frames to infer tissue properties (e.g., T1 and T2 relaxation times). In this paper, we introduce a novel end-to-end deep learning framework to seamlessly map the tissue properties directly from spiral k-space MRF data, thereby avoiding time-consuming processing such as the nonuniform fast Fourier transform (NUFFT) and the dictionary-based Fingerprint matching. Our method directly consumes the non-Cartesian k- space data, performs adaptive density compensation, and predicts multiple tissue property maps in one forward pass. Experiments on both 2D and 3D MRF data demonstrate that quantification accuracy comparable to state-of-the-art methods can be accomplished within 0.5 second, which is 1100 to 7700 times faster than the original MRF framework. The proposed method is thus promising for facilitating the adoption of MRF in clinical settings.
Magnetic Resonance Fingerprinting (MRF) is a new approach to quantitative magnetic resonance imaging that allows simultaneous measurement of multiple tissue properties in a single, time-efficient acquisition. Standard MRF reconstructs parametric maps using dictionary matching and lacks scalability due to computational inefficiency. We propose to perform MRF map reconstruction using a recurrent neural network, which exploits the time-dependent information of the MRF signal evolution. We evaluate our method on multiparametric synthetic signals and compare it to existing MRF map reconstruction approaches, including those based on neural networks. Our method achieves state-of-the-art estimates of T1 and T2 values. In addition, the reconstruction time is significantly reduced compared to dictionary-matching based approaches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا