ترغب بنشر مسار تعليمي؟ اضغط هنا

Rapid Reionization by the Oligarchs: The Case for Massive, UV-Bright, Star-Forming Galaxies with High Escape Fractions

121   0   0.0 ( 0 )
 نشر من قبل Rohan Naidu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The protagonists of cosmic reionization remain elusive. Faint star-forming galaxies are leading candidates because they are numerous and may have significant ionizing photon escape fractions ($f_{esc}$). Here we update this picture via an empirical model that successfully predicts latest observations (e.g., the drop in star-formation density at z>8). We generate an ionizing spectrum for each galaxy in our model and constrain $f_{esc}$ using latest measurements of the reionization timeline (e.g., Ly$alpha$ damping of quasars and galaxies at z>7). Assuming a constant $f_{esc}$, we find $M_{UV}$<-13.5 galaxies need $f_{esc}=0.21^{+0.06}_{-0.04}$ to complete reionization. The inferred IGM neutral fraction is [0.9, 0.5, 0.1] at z=[8.2, 6.8, 6.2]$pm$0.2, i.e., the bulk of reionization transpires in 300 Myrs. Inspired by the emergent sample of Lyman Continuum (LyC) leakers that overwhelmingly displays higher-than-average star-formation surface density ($Sigma$), we propose a model relating $f_{esc}$ to $Sigma$ and find $f_{esc}proptoSigma^{0.4pm0.1}$. Since $Sigma$ falls by ~2.5 dex between z=8 and z=0, our model explains the humble upper limits on $f_{esc}$ at lower redshifts and its required evolution to ~0.2 at z>6. Within this model, strikingly, <5% of galaxies with $M_{UV}$<-18 (the `oligarchs) account for >80% of the reionization budget. In fact, faint sources ($M_{UV}$>-16) must be relegated to a limited role to ensure high neutral fractions at z=7-8. Shallow faint-end slopes of the UV luminosity function ($alpha$>-2) and/or $f_{esc}$ distributions skewed toward bright galaxies produce the required late and rapid reionization. We predict LyC leakers like COLA1 (z=6.6, $f_{esc}$~30%, $M_{UV}$=-21.5) become increasingly common towards z~6 and that the drivers of reionization do not lie hidden across the faint-end of the luminosity function, but are already known to us. (abridged)


قيم البحث

اقرأ أيضاً

Population III stars can regulate star formation in the primordial Universe in several ways. They can ionize nearby halos, and even if their ionizing photons are trapped by their own halos, their Lyman-Werner (LW) photons can still escape and destroy H$_2$ in other halos, preventing them from cooling and forming stars. LW escape fractions are thus a key parameter in cosmological simulations of early reionization and star formation but have not yet been parametrized for realistic halos by halo or stellar mass. To do so, we perform radiation hydrodynamical simulations of LW UV escape from 9--120 M$_{odot}$ Pop III stars in $10^5$ to $10^7$ M$_{odot}$ halos with ZEUS-MP. We find that photons in the LW lines (i.e. those responsible for destroying H$_{2}$ in nearby systems) have escape fractions ranging from 0% to 85%. No LW photons escape the most massive halo in our sample, even from the most massive star. Escape fractions for photons elsewhere in the 11.18--13.6~eV energy range, which can be redshifted into the LW lines at cosmological distances, are generally much higher, being above 60% for all but the least massive stars in the most massive halos. We find that shielding of H$_2$ by neutral hydrogen, which has been neglected in most studies to date, produces escape fractions that are up to a factor of three smaller than those predicted by H$_2$ self-shielding alone.
82 - Xiangcheng Ma 2020
We present the escape fraction of hydrogen ionizing photons (f_esc) from a sample of 34 high-resolution cosmological zoom-in simulations of galaxies at z>5 in the Feedback in Realistic Environments project, post-processed with a Monte Carlo radiative transfer code for ionizing radiation. Our sample consists of 8500 halos in M_vir~10^8--10^{12} M_sun (M_star~10^4--10^{10} M_sun) at z=5--12. We find the sample average <f_esc> increases with halo mass for M_vir~10^8--10^{9.5} M_sun, becomes nearly constant for M_vir~10^{9.5}--10^{11} M_sun, and decreases at M_vir>10^{11} M_sun. Equivalently, <f_esc> increases with stellar mass up to M_star~10^8 M_sun and decreases at higher masses. Even applying single-star stellar population synthesis models, we find a moderate <f_esc>~0.2 for galaxies at M_star~10^8 M_sun. Nearly half of the escaped ionizing photons come from stars 1--3 Myr old and the rest from stars 3--10 Myr old. Binaries only have a modest effect, boosting <f_esc> by ~25--35% and the number of escaped photons by 60--80%. Most leaked ionizing photons are from vigorously star-forming regions that usually contain a feedback-driven kpc-scale superbubble surrounded by a dense shell. The shell is forming stars while accelerated, so new stars formed earlier in the shell are already inside the shell. Young stars in the bubble and near the edge of the shell can fully ionize some low-column-density paths pre-cleared by feedback, allowing a large fraction of their ionizing photons to escape. The decrease of <f_esc> at the high-mass end is due to dust attenuation, while at the low-mass end, <f_esc> decreases owing to inefficient star formation (and hence feedback). At fixed mass, <f_esc> tends to increase with redshift. Our simulations produce sufficient ionizing photons for cosmic reionization.
Stars form from cold molecular interstellar gas. Since this is relatively rare in the local Universe, galaxies like the Milky Way form only a few new stars per year. Typical massive galaxies in the distant Universe formed stars an order of magnitude more rapidly. Unless star formation was significantly more efficient, this difference suggests that young galaxies were much more gas rich. Molecular gas observations in the distant Universe have so far been largely restricted to very luminous, rare objects, including mergers and quasars. Here we report the results of a systematic survey of molecular gas in samples of typical massive star forming galaxies at <z>~1.2 and 2.3, when the Universe was 40% and 24% of its current age. Our measurements provide empirical evidence that distant star forming galaxies indeed were gas rich, and that the star formation efficiency is not strongly dependent on cosmic epoch. The average fraction of cold gas relative to total galaxy baryonic mass at z= 2.3 and z=1.2 is ~44% and 34%, three to ten times higher than in todays massive spiral galaxies. The slow decrease between z~2 and 1 probably requires a mechanism of semi-continuous replenishment of fresh gas to the young galaxies.
129 - Xiangcheng Ma 2015
We present a series of high-resolution (20-2000 Msun, 0.1-4 pc) cosmological zoom-in simulations at z~6 from the Feedback In Realistic Environment (FIRE) project. These simulations cover halo masses 10^9-10^11 Msun and rest-frame ultraviolet magnitud e Muv = -9 to -19. These simulations include explicit models of the multi-phase ISM, star formation, and stellar feedback, which produce reasonable galaxy properties at z = 0-6. We post-process the snapshots with a radiative transfer code to evaluate the escape fraction (fesc) of hydrogen ionizing photons. We find that the instantaneous fesc has large time variability (0.01%-20%), while the time-averaged fesc over long time-scales generally remains ~5%, considerably lower than the estimate in many reionization models. We find no strong dependence of fesc on galaxy mass or redshift. In our simulations, the intrinsic ionizing photon budgets are dominated by stellar populations younger than 3 Myr, which tend to be buried in dense birth clouds. The escaping photons mostly come from populations between 3-10 Myr, whose birth clouds have been largely cleared by stellar feedback. However, these populations only contribute a small fraction of intrinsic ionizing photon budgets according to standard stellar population models. We show that fesc can be boosted to high values, if stellar populations older than 3 Myr produce more ionizing photons than standard stellar population models (as motivated by, e.g., models including binaries). By contrast, runaway stars with velocities suggested by observations can enhance fesc by only a small fraction. We show that sub-grid star formation models, which do not explicitly resolve star formation in dense clouds with n >> 1 cm^-3, will dramatically over-predict fesc.
105 - C. Mancuso 2016
We exploit the continuity equation approach and the `main sequence star-formation timescales to show that the observed high abundance of galaxies with stellar masses > a few 10^10 M_sun at redshift z>4 implies the existence of a galaxy population fea turing large star formation rates (SFRs) > 10^2 M_sun/yr in heavily dust-obscured conditions. These galaxies constitute the high-redshift counterparts of the dusty star-forming population already surveyed for z<3 in the far-IR band by the Herschel space observatory. We work out specific predictions for the evolution of the corresponding stellar mass and SFR functions out to z~10, elucidating that the number density at z<8 for SFRs >30 M_sun/yr cannot be estimated relying on the UV luminosity function alone, even when standard corrections for dust extinction based on the UV slope are applied. We compute the number counts and redshift distributions (including galaxy-scale gravitational lensing) of this galaxy population, and show that current data from AzTEC-LABOCA, SCUBA-2 and ALMA-SPT surveys are already digging into it. We substantiate how an observational strategy based on a color preselection in the far-IR or (sub-)mm band with Herschel and SCUBA-2, supplemented by photometric data via on-source observations with ALMA, can allow to reconstruct the bright end of the SFR functions out to z~8. In parallel, such a challenging task can be managed by exploiting current UV surveys in combination with (sub-)mm observations by ALMA and NIKA2 and/or radio observations by SKA and its precursors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا