ﻻ يوجد ملخص باللغة العربية
The protagonists of cosmic reionization remain elusive. Faint star-forming galaxies are leading candidates because they are numerous and may have significant ionizing photon escape fractions ($f_{esc}$). Here we update this picture via an empirical model that successfully predicts latest observations (e.g., the drop in star-formation density at z>8). We generate an ionizing spectrum for each galaxy in our model and constrain $f_{esc}$ using latest measurements of the reionization timeline (e.g., Ly$alpha$ damping of quasars and galaxies at z>7). Assuming a constant $f_{esc}$, we find $M_{UV}$<-13.5 galaxies need $f_{esc}=0.21^{+0.06}_{-0.04}$ to complete reionization. The inferred IGM neutral fraction is [0.9, 0.5, 0.1] at z=[8.2, 6.8, 6.2]$pm$0.2, i.e., the bulk of reionization transpires in 300 Myrs. Inspired by the emergent sample of Lyman Continuum (LyC) leakers that overwhelmingly displays higher-than-average star-formation surface density ($Sigma$), we propose a model relating $f_{esc}$ to $Sigma$ and find $f_{esc}proptoSigma^{0.4pm0.1}$. Since $Sigma$ falls by ~2.5 dex between z=8 and z=0, our model explains the humble upper limits on $f_{esc}$ at lower redshifts and its required evolution to ~0.2 at z>6. Within this model, strikingly, <5% of galaxies with $M_{UV}$<-18 (the `oligarchs) account for >80% of the reionization budget. In fact, faint sources ($M_{UV}$>-16) must be relegated to a limited role to ensure high neutral fractions at z=7-8. Shallow faint-end slopes of the UV luminosity function ($alpha$>-2) and/or $f_{esc}$ distributions skewed toward bright galaxies produce the required late and rapid reionization. We predict LyC leakers like COLA1 (z=6.6, $f_{esc}$~30%, $M_{UV}$=-21.5) become increasingly common towards z~6 and that the drivers of reionization do not lie hidden across the faint-end of the luminosity function, but are already known to us. (abridged)
Population III stars can regulate star formation in the primordial Universe in several ways. They can ionize nearby halos, and even if their ionizing photons are trapped by their own halos, their Lyman-Werner (LW) photons can still escape and destroy
We present the escape fraction of hydrogen ionizing photons (f_esc) from a sample of 34 high-resolution cosmological zoom-in simulations of galaxies at z>5 in the Feedback in Realistic Environments project, post-processed with a Monte Carlo radiative
Stars form from cold molecular interstellar gas. Since this is relatively rare in the local Universe, galaxies like the Milky Way form only a few new stars per year. Typical massive galaxies in the distant Universe formed stars an order of magnitude
We present a series of high-resolution (20-2000 Msun, 0.1-4 pc) cosmological zoom-in simulations at z~6 from the Feedback In Realistic Environment (FIRE) project. These simulations cover halo masses 10^9-10^11 Msun and rest-frame ultraviolet magnitud
We exploit the continuity equation approach and the `main sequence star-formation timescales to show that the observed high abundance of galaxies with stellar masses > a few 10^10 M_sun at redshift z>4 implies the existence of a galaxy population fea