ترغب بنشر مسار تعليمي؟ اضغط هنا

Synthesis and Inpainting-Based MR-CT Registration for Image-Guided Thermal Ablation of Liver Tumors

119   0   0.0 ( 0 )
 نشر من قبل Dongming Wei
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Thermal ablation is a minimally invasive procedure for treat-ing small or unresectable tumors. Although CT is widely used for guiding ablation procedures, the contrast of tumors against surrounding normal tissues in CT images is often poor, aggravating the difficulty in accurate thermal ablation. In this paper, we propose a fast MR-CT image registration method to overlay a pre-procedural MR (pMR) image onto an intra-procedural CT (iCT) image for guiding the thermal ablation of liver tumors. By first using a Cycle-GAN model with mutual information constraint to generate synthesized CT (sCT) image from the cor-responding pMR, pre-procedural MR-CT image registration is carried out through traditional mono-modality CT-CT image registration. At the intra-procedural stage, a partial-convolution-based network is first used to inpaint the probe and its artifacts in the iCT image. Then, an unsupervised registration network is used to efficiently align the pre-procedural CT (pCT) with the inpainted iCT (inpCT) image. The final transformation from pMR to iCT is obtained by combining the two estimated transformations,i.e., (1) from the pMR image space to the pCT image space (through sCT) and (2) from the pCT image space to the iCT image space (through inpCT). Experimental results confirm that the proposed method achieves high registration accuracy with a very fast computational speed.



قيم البحث

اقرأ أيضاً

This paper strives to generate a synthetic computed tomography (CT) image from a magnetic resonance (MR) image. The synthetic CT image is valuable for radiotherapy planning when only an MR image is available. Recent approaches have made large strides in solving this challenging synthesis problem with convolutional neural networks that learn a mapping from MR inputs to CT outputs. In this paper, we find that all existing approaches share a common limitation: reconstruction breaks down in and around the high-frequency parts of CT images. To address this common limitation, we introduce frequency-supervised deep networks to explicitly enhance high-frequency MR-to-CT image reconstruction. We propose a frequency decomposition layer that learns to decompose predicted CT outputs into low- and high-frequency components, and we introduce a refinement module to improve high-frequency reconstruction through high-frequency adversarial learning. Experimental results on a new dataset with 45 pairs of 3D MR-CT brain images show the effectiveness and potential of the proposed approach. Code is available at url{https://github.com/shizenglin/Frequency-Supervised-MR-to-CT-Image-Synthesis}.
Automatic segmentation of hepatic lesions in computed tomography (CT) images is a challenging task to perform due to heterogeneous, diffusive shape of tumors and complex background. To address the problem more and more researchers rely on assistance of deep convolutional neural networks (CNN) with 2D or 3D type architecture that have proven to be effective in a wide range of computer vision tasks, including medical image processing. In this technical report, we carry out research focused on more careful approach to the process of learning rather than on complex architecture of the CNN. We have chosen MICCAI 2017 LiTS dataset for training process and the public 3DIRCADb dataset for validation of our method. The proposed algorithm reached DICE score 78.8% on the 3DIRCADb dataset. The described method was then applied to the 2019 Kidney Tumor Segmentation (KiTS-2019) challenge, where our single submission achieved 96.38% for kidney and 67.38% for tumor Dice scores.
Multi-modal image registration is a challenging problem that is also an important clinical task for many real applications and scenarios. As a first step in analysis, deformable registration among different image modalities is often required in order to provide complementary visual information. During registration, semantic information is key to match homologous points and pixels. Nevertheless, many conventional registration methods are incapable in capturing high-level semantic anatomical dense correspondences. In this work, we propose a novel multi-task learning system, JSSR, based on an end-to-end 3D convolutional neural network that is composed of a generator, a registration and a segmentation component. The system is optimized to satisfy the implicit constraints between different tasks in an unsupervised manner. It first synthesizes the source domain images into the target domain, then an intra-modal registration is applied on the synthesized images and target images. The segmentation module are then applied on the synthesized and target images, providing additional cues based on semantic correspondences. The supervision from another fully-annotated dataset is used to regularize the segmentation. We extensively evaluate JSSR on a large-scale medical image dataset containing 1,485 patient CT imaging studies of four different contrast phases (i.e., 5,940 3D CT scans with pathological livers) on the registration, segmentation and synthesis tasks. The performance is improved after joint training on the registration and segmentation tasks by 0.9% and 1.9% respectively compared to a highly competitive and accurate deep learning baseline. The registration also consistently outperforms conventional state-of-the-art multi-modal registration methods.
Noninvasive MR-guided focused ultrasound (MRgFUS) treatments are promising alternatives to the surgical removal of malignant tumors. A significant challenge is assessing the viability of treated tissue during and immediately after MRgFUS procedures. Current clinical assessment uses the nonperfused volume (NPV) biomarker immediately after treatment from contrast-enhanced MRI. The NPV has variable accuracy, and the use of contrast agent prevents continuing MRgFUS treatment if tumor coverage is inadequate. This work presents a novel, noncontrast, learned multiparametric MR biomarker that can be used during treatment for intratreatment assessment, validated in a VX2 rabbit tumor model. A deep convolutional neural network was trained on noncontrast multiparametric MR images using the NPV biomarker from follow-up MR imaging (3-5 days after MRgFUS treatment) as the accurate label of nonviable tissue. A novel volume-conserving registration algorithm yielded a voxel-wise correlation between treatment and follow-up NPV, providing a rigorous validation of the biomarker. The learned noncontrast multiparametric MR biomarker predicted the follow-up NPV with an average DICE coefficient of 0.71, substantially outperforming the current clinical standard (DICE coefficient = 0.53). Noncontrast multiparametric MR imaging integrated with a deep convolutional neural network provides a more accurate prediction of MRgFUS treatment outcome than current contrast-based techniques.
While medical image segmentation is an important task for computer aided diagnosis, the high expertise requirement for pixelwise manual annotations makes it a challenging and time consuming task. Since conventional data augmentations do not fully rep resent the underlying distribution of the training set, the trained models have varying performance when tested on images captured from different sources. Most prior work on image synthesis for data augmentation ignore the interleaved geometric relationship between different anatomical labels. We propose improvements over previous GAN-based medical image synthesis methods by learning the relationship between different anatomical labels. We use a weakly supervised segmentation method to obtain pixel level semantic label map of images which is used learn the intrinsic relationship of geometry and shape across semantic labels. Latent space variable sampling results in diverse generated images from a base image and improves robustness. We use the synthetic images from our method to train networks for segmenting COVID-19 infected areas from lung CT images. The proposed method outperforms state-of-the-art segmentation methods on a public dataset. Ablation studies also demonstrate benefits of integrating geometry and diversity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا