ترغب بنشر مسار تعليمي؟ اضغط هنا

Activation of nominally silent domain wall-localized phonons from GHz to THz frequencies

71   0   0.0 ( 0 )
 نشر من قبل Sergey Artyukhin
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ferroelectric domain walls (DWs) are nanoscale topological defects that can be easily tailored to create nanoscale devices. Their excitations, recently discovered to be responsible for DW GHz conductivity, hold promise for faster signal transmission and processing speed compared to the existing technology. Here we find that DW phonons disperse from GHz to THz frequencies, thus explaining the origin of the surprisingly broad GHz signature in DW conductivity. Puzzling activation of nominally silent DW sliding modes in BiFeO3 is traced back to DW tilting and resulting asymmetry in wall-localized phonons. The obtained phonon spectra and selection rules are used to simulate scanning impedance microscopy, emerging as a powerful probe in nanophononics. The results will guide experimental discovery of the predicted phonon branches and design of DW-based nanodevices.



قيم البحث

اقرأ أيضاً

Nanoelectronic devices based on ferroelectric domain walls (DWs), such as memories, transistors, and rectifiers, have been demonstrated in recent years. Practical high-speed electronics, on the other hand, usually demand operation frequencies in the giga-Hertz (GHz) regime, where the effect of dipolar oscillation is important. In this work, an unexpected giant GHz conductivity on the order of 103 S/m is observed in certain BiFeO3 DWs, which is about 100,000 times greater than the carrier-induced dc conductivity of the same walls. Surprisingly, the nominal configuration of the DWs precludes the ac conduction under an excitation electric field perpendicular to the surface. Theoretical analysis shows that the inclined DWs are stressed asymmetrically near the film surface, whereas the vertical walls in a control sample are not. The resultant imbalanced polarization profile can then couple to the out-of-plane microwave fields and induce power dissipation, which is confirmed by the phase-field modeling. Since the contributions from mobile-carrier conduction and bound-charge oscillation to the ac conductivity are equivalent in a microwave circuit, the research on local structural dynamics may open a new avenue to implement DW nano-devices for RF applications.
Deterministic control of domain walls orthogonal to the direction of current flow is demonstrated by exploiting spin orbit torque in a perpendicularly polarized Ta/CoFeB/MgO multilayer in presence of an in-plane magnetic field. Notably, such orthogon al motion with respect to current flow is not possible from traditional spin transfer torque driven domain wall propagation even in presence of an external magnetic field. Reversing the polarity of either the current flow or the in-plane field is found to reverse the direction of the domain wall motion. From these measurements, which are unaffected by any conventional spin transfer torque by symmetry, we estimate the spin orbit torque efficiency of Ta to be 0.08.
199 - Gongzheng Chen , Jin Lan , Tai Min 2021
Ferroelectric materials are spontaneous symmetry breaking systems characterized by ordered electric polarizations. Similar to its ferromagnetic counterpart, a ferroelectric domain wall can be regarded as a soft interface separating two different ferr oelectric domains. Here we show that two bound state excitations of electric polarization (polar wave), or the vibration and breathing modes, can be hosted and propagate within the ferroelectric domain wall. Specially, the vibration polar wave has zero frequency gap, thus is constricted deeply inside ferroelectric domain wall, and can propagate even in the presence of local pinnings. The ferroelectric domain wall waveguide as demonstrated here, offers new paradigm in developing ferroelectric information processing units.
Magnetic domain walls are information tokens in both logic and memory devices, and hold particular interest in applications such as neuromorphic accelerators that combine logic in memory. Here, we show that devices based on the electrical manipulatio n of magnetic domain walls are capable of implementing linear, as well as programmable nonlinear, functions. Unlike other approaches, domain-wall-based devices are ideal for application to both synaptic weight generators and thresholding in deep neural networks. Prototype micrometer-size devices operate with 8 ns current pulses and the energy consumption required for weight modulation is < 16 pJ. Both speed and energy consumption compare favorably to other synaptic nonvolatile devices, with the expected energy dissipation for scaled 20 nm devices close to that of biological neurons.
We formulate a theory on the dynamics of conduction electrons in the presence of moving magnetic textures in ferromagnetic materials. We show that the variation of local magnetization in both space and time gives rise to topological fields, which ind uce electromotive forces on the electrons. Universal results are obtained for the emf induced by both transverse and vortex domain walls traveling in a magnetic film strip, and their measurement may provide clear characterization on the motion of such walls.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا