ﻻ يوجد ملخص باللغة العربية
In this paper we study invariant rings arising in the study of finite dimensional algebraic structures. The rings we encounter are graded rings of the form $K[U]^{Gamma}$ where $Gamma$ is a product of general linear groups over a field $K$ of characteristic zero, and $U$ is a finite dimensional rational representation of $Gamma$. We will calculate the Hilbert series of such rings using the representation theory of the symmetric groups and Schur-Weyl duality. We focus on the case where $U=text{End}(W^{oplus k})$ and $Gamma = text{GL}(W)$ and on the case where $U=text{End}(Votimes W)$ and $Gamma = text{GL}(V)times text{GL}(W)$, though the methods introduced here can also be applied in more general framework. For the two aforementioned cases we calculate the Hilbert function of the ring of invariants in terms of Littlewood-Richardson and Kronecker coefficients. When the vector spaces are of dimension 2 we also give an explicit calculation of this Hilbert series.
For the coinvariant rings of finite Coxeter groups of types other than H$_4$, we show that a homogeneous element of degree one is a strong Lefschetz element if and only if it is not fixed by any reflections. We also give the necessary and sufficient
We classify the irreducible projective representations of symmetric and alternating groups of minimal possible and second minimal possible dimensions, and get a lower bound for the third minimal dimension. On the way we obtain some new results on branching which might be of independent interest.
In the 40s, Mayer introduced a construction of (simplicial) $p$-complex by using the unsigned boundary map and taking coefficients of chains modulo $p$. We look at such a $p$-complex associated to an $(n-1)$-simplex; in which case, this is also a $p$
In this paper, we will consider derived equivalences for differential graded endomorphism algebras by Kellers approaches. First we construct derived equivalences of differential graded algebras which are endomorphism algebras of the objects from a tr
In his seminal Lecture Notes in Mathematics published in 1981, Andrey Zelevinsky introduced a new family of Hopf algebras which he called {em PSH-algebras}. These algebras were designed to capture the representation theory of the symmetric groups and