ترغب بنشر مسار تعليمي؟ اضغط هنا

Reg R-CNN: Lesion Detection and Grading under Noisy Labels

69   0   0.0 ( 0 )
 نشر من قبل Gregor Ramien
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

For the task of concurrently detecting and categorizing objects, the medical imaging community commonly adopts methods developed on natural images. Current state-of-the-art object detectors are comprised of two stages: the first stage generates region proposals, the second stage subsequently categorizes them. Unlike in natural images, however, for anatomical structures of interest such as tumors, the appearance in the image (e.g., scale or intensity) links to a malignancy grade that lies on a continuous ordinal scale. While classification models discard this ordinal relation between grades by discretizing the continuous scale to an unordered bag of categories, regression models are trained with distance metrics, which preserve the relation. This advantage becomes all the more important in the setting of label confusions on ambiguous data sets, which is the usual case with medical images. To this end, we propose Reg R-CNN, which replaces the second-stage classification model of a current object detector with a regression model. We show the superiority of our approach on a public data set with 1026 patients and a series of toy experiments. Code will be available at github.com/MIC-DKFZ/RegRCNN.



قيم البحث

اقرأ أيضاً

Current state-of-the-art two-stage detectors generate oriented proposals through time-consuming schemes. This diminishes the detectors speed, thereby becoming the computational bottleneck in advanced oriented object detection systems. This work propo ses an effective and simple oriented object detection framework, termed Oriented R-CNN, which is a general two-stage oriented detector with promising accuracy and efficiency. To be specific, in the first stage, we propose an oriented Region Proposal Network (oriented RPN) that directly generates high-quality oriented proposals in a nearly cost-free manner. The second stage is oriented R-CNN head for refining oriented Regions of Interest (oriented RoIs) and recognizing them. Without tricks, oriented R-CNN with ResNet50 achieves state-of-the-art detection accuracy on two commonly-used datasets for oriented object detection including DOTA (75.87% mAP) and HRSC2016 (96.50% mAP), while having a speed of 15.1 FPS with the image size of 1024$times$1024 on a single RTX 2080Ti. We hope our work could inspire rethinking the design of oriented detectors and serve as a baseline for oriented object detection. Code is available at https://github.com/jbwang1997/OBBDetection.
148 - Yehui Yang , Tao Li , Wensi Li 2017
We propose an automatic diabetic retinopathy (DR) analysis algorithm based on two-stages deep convolutional neural networks (DCNN). Compared to existing DCNN-based DR detection methods, the proposed algorithm have the following advantages: (1) Our me thod can point out the location and type of lesions in the fundus images, as well as giving the severity grades of DR. Moreover, since retina lesions and DR severity appear with different scales in fundus images, the integration of both local and global networks learn more complete and specific features for DR analysis. (2) By introducing imbalanced weighting map, more attentions will be given to lesion patches for DR grading, which significantly improve the performance of the proposed algorithm. In this study, we label 12,206 lesion patches and re-annotate the DR grades of 23,595 fundus images from Kaggle competition dataset. Under the guidance of clinical ophthalmologists, the experimental results show that our local lesion detection net achieve comparable performance with trained human observers, and the proposed imbalanced weighted scheme also be proved to significantly improve the capability of our DCNN-based DR grading algorithm.
Medical Imaging is one of the growing fields in the world of computer vision. In this study, we aim to address the Diabetic Retinopathy (DR) problem as one of the open challenges in medical imaging. In this research, we propose a new lesion detection architecture, comprising of two sub-modules, which is an optimal solution to detect and find not only the type of lesions caused by DR, their corresponding bounding boxes, and their masks; but also the severity level of the overall case. Aside from traditional accuracy, we also use two popular evaluation criteria to evaluate the outputs of our models, which are intersection over union (IOU) and mean average precision (mAP). We hypothesize that this new solution enables specialists to detect lesions with high confidence and estimate the severity of the damage with high accuracy.
Training deep neural networks (DNNs) in the presence of noisy labels is an important and challenging task. Probabilistic modeling, which consists of a classifier and a transition matrix, depicts the transformation from true labels to noisy labels and is a promising approach. However, recent probabilistic methods directly apply transition matrix to DNN, neglect DNNs susceptibility to overfitting, and achieve unsatisfactory performance, especially under the uniform noise. In this paper, inspired by label smoothing, we proposed a novel method, in which a smoothed transition matrix is used for updating DNN, to restrict the overfitting of DNN in probabilistic modeling. Our method is termed Matrix Smoothing. We also empirically demonstrate that our method not only improves the robustness of probabilistic modeling significantly, but also even obtains a better estimation of the transition matrix.
Large-scale datasets with high-quality labels are desired for training accurate deep learning models. However, due to the annotation cost, datasets in medical imaging are often either partially-labeled or small. For example, DeepLesion is such a larg e-scale CT image dataset with lesions of various types, but it also has many unlabeled lesions (missing annotations). When training a lesion detector on a partially-labeled dataset, the missing annotations will generate incorrect negative signals and degrade the performance. Besides DeepLesion, there are several small single-type datasets, such as LUNA for lung nodules and LiTS for liver tumors. These datasets have heterogeneous label scopes, i.e., different lesion types are labeled in different datasets with other types ignored. In this work, we aim to develop a universal lesion detection algorithm to detect a variety of lesions. The problem of heterogeneous and partial labels is tackled. First, we build a simple yet effective lesion detection framework named Lesion ENSemble (LENS). LENS can efficiently learn from multiple heterogeneous lesion datasets in a multi-task fashion and leverage their synergy by proposal fusion. Next, we propose strategies to mine missing annotations from partially-labeled datasets by exploiting clinical prior knowledge and cross-dataset knowledge transfer. Finally, we train our framework on four public lesion datasets and evaluate it on 800 manually-labeled sub-volumes in DeepLesion. Our method brings a relative improvement of 49% compared to the current state-of-the-art approach in the metric of average sensitivity. We have publicly released our manual 3D annotations of DeepLesion in https://github.com/viggin/DeepLesion_manual_test_set.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا