ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Synchronisation Enabled by Dynamical Symmetries and Dissipation

120   0   0.0 ( 0 )
 نشر من قبل Joseph Tindall
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In nature, instances of synchronisation abound across a diverse range of environments. In the quantum regime, however, synchronisation is typically observed by identifying an appropriate parameter regime in a specific system. In this work we show that this need not be the case, identifying conditions which, when satisfied, guarantee that the individual constituents of a generic open quantum system will undergo completely synchronous limit cycles which are, to first order, robust to symmetry-breaking perturbations. We then describe how these conditions can be satisfied by the interplay between several elements: interactions, local dephasing and the presence of a strong dynamical symmetry - an operator which guarantees long-time non-stationary dynamics. These elements cause the formation of entanglement and off-diagonal long-range order which drive the synchronised response of the system. To illustrate these ideas we present two central examples: a chain of quadratically dephased spin-1s and the many-body charge-dephased Hubbard model. In both cases perfect phase-locking occurs throughout the system, regardless of the specific microscopic parameters or initial states. Furthermore, when these systems are perturbed, their non-linear responses elicit long-lived signatures of both phase and frequency-locking.

قيم البحث

اقرأ أيضاً

In driven-dissipative systems, the presence of a strong symmetry guarantees the existence of several steady states belonging to different symmetry sectors. Here we show that, when a system with a strong symmetry is initialized in a quantum superposit ion involving several of these sectors, each individual stochastic trajectory will randomly select a single one of them and remain there for the rest of the evolution. Since a strong symmetry implies a conservation law for the corresponding symmetry operator on the ensemble level, this selection of a single sector from an initial superposition entails a breakdown of this conservation law at the level of individual realizations. Given that such a superposition is impossible in a classical, stochastic trajectory, this is a a purely quantum effect with no classical analogue. Our results show that a system with a closed Liouvillian gap may exhibit, when monitored over a single run of an experiment, a behaviour completely opposite to the usual notion of dynamical phase coexistence and intermittency, which are typically considered hallmarks of a dissipative phase transition. We discuss our results with a simple, realistic model of squeezed superradiance.
The assumption that quantum systems relax to a stationary state in the long-time limit underpins statistical physics and much of our intuitive understanding of scientific phenomena. For isolated systems this follows from the eigenstate thermalization hypothesis. When an environment is present the expectation is that all of phase space is explored, eventually leading to stationarity. Notable exceptions are decoherence-free subspaces that have important implications for quantum technologies and have so far only been studied for systems with a few degrees of freedom. Here we identify simple and generic conditions for dissipation to prevent a quantum many-body system from ever reaching a stationary state. We go beyond dissipative quantum state engineering approaches towards controllable long-time non-stationarity typically associated with macroscopic complex systems. This coherent and oscillatory evolution constitutes a dissipative version of a quantum time-crystal. We discuss the possibility of engineering such complex dynamics with fermionic ultracold atoms in optical lattices.
We study the null space degeneracy of open quantum systems with multiple non-Abelian, strong symmetries. By decomposing the Hilbert space representation of these symmetries into an irreducible representation involving the direct sum of multiple, comm uting, invariant subspaces we derive a tight lower bound for the stationary state degeneracy. We apply these results within the context of open quantum many-body systems, presenting three illustrative examples: a fully-connected quantum network, the XXX Heisenberg model and the Hubbard model. We find that the derived bound, which scales at least cubically in the system size the $SU(2)$ symmetric cases, is often saturated. Moreover, our work provides a theory for the systematic block-decomposition of a Liouvillian with non-Abelian symmetries, reducing the computational difficulty involved in diagonalising these objects and exposing a natural, physical structure to the steady states - which we observe in our examples.
Relaxation to a thermal state is the inevitable fate of non-equilibrium interacting quantum systems without special conservation laws. While thermalization in one-dimensional (1D) systems can often be suppressed by integrability mechanisms, in two sp atial dimensions thermalization is expected to be far more effective due to the increased phase space. In this work we propose a general framework for escaping or delaying the emergence of the thermal state in two-dimensional (2D) arrays of Rydberg atoms via the mechanism of quantum scars, i.e. initial states that fail to thermalize. The suppression of thermalization is achieved in two complementary ways: by adding local perturbations or by adjusting the driving Rabi frequency according to the local connectivity of the lattice. We demonstrate that these mechanisms allow to realize robust quantum scars in various two-dimensional lattices, including decorated lattices with non-constant connectivity. In particular, we show that a small decrease of the Rabi frequency at the corners of the lattice is crucial for mitigating the strong boundary effects in two-dimensional systems. Our results identify synchronization as an important tool for future experiments on two-dimensional quantum scars.
Topological states of fermionic matter can be induced by means of a suitably engineered dissipative dynamics. Dissipation then does not occur as a perturbation, but rather as the main resource for many-body dynamics, providing a targeted cooling into a topological phase starting from an arbitrary initial state. We explore the concept of topological order in this setting, developing and applying a general theoretical framework based on the system density matrix which replaces the wave function appropriate for the discussion of Hamiltonian ground-state physics. We identify key analogies and differences to the more conventional Hamiltonian scenario. Differences mainly arise from the fact that the properties of the spectrum and of the state of the system are not as tightly related as in a Hamiltonian context. We provide a symmetry-based topological classification of bulk steady states and identify the classes that are achievable by means of quasi-local dissipative processes driving into superfluid paired states. We also explore the fate of the bulk-edge correspondence in the dissipative setting, and demonstrate the emergence of Majorana edge modes. We illustrate our findings in one- and two-dimensional models that are experimentally realistic in the context of cold atoms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا