ﻻ يوجد ملخص باللغة العربية
In nature, instances of synchronisation abound across a diverse range of environments. In the quantum regime, however, synchronisation is typically observed by identifying an appropriate parameter regime in a specific system. In this work we show that this need not be the case, identifying conditions which, when satisfied, guarantee that the individual constituents of a generic open quantum system will undergo completely synchronous limit cycles which are, to first order, robust to symmetry-breaking perturbations. We then describe how these conditions can be satisfied by the interplay between several elements: interactions, local dephasing and the presence of a strong dynamical symmetry - an operator which guarantees long-time non-stationary dynamics. These elements cause the formation of entanglement and off-diagonal long-range order which drive the synchronised response of the system. To illustrate these ideas we present two central examples: a chain of quadratically dephased spin-1s and the many-body charge-dephased Hubbard model. In both cases perfect phase-locking occurs throughout the system, regardless of the specific microscopic parameters or initial states. Furthermore, when these systems are perturbed, their non-linear responses elicit long-lived signatures of both phase and frequency-locking.
In driven-dissipative systems, the presence of a strong symmetry guarantees the existence of several steady states belonging to different symmetry sectors. Here we show that, when a system with a strong symmetry is initialized in a quantum superposit
The assumption that quantum systems relax to a stationary state in the long-time limit underpins statistical physics and much of our intuitive understanding of scientific phenomena. For isolated systems this follows from the eigenstate thermalization
We study the null space degeneracy of open quantum systems with multiple non-Abelian, strong symmetries. By decomposing the Hilbert space representation of these symmetries into an irreducible representation involving the direct sum of multiple, comm
Relaxation to a thermal state is the inevitable fate of non-equilibrium interacting quantum systems without special conservation laws. While thermalization in one-dimensional (1D) systems can often be suppressed by integrability mechanisms, in two sp
Topological states of fermionic matter can be induced by means of a suitably engineered dissipative dynamics. Dissipation then does not occur as a perturbation, but rather as the main resource for many-body dynamics, providing a targeted cooling into