ﻻ يوجد ملخص باللغة العربية
Experimentally Cr doping in the rutile phase of VO$_2$ is found to stabilize a charge ordered ferromagnetic insulating state in the doping range of 10% to 20%. In this work, we investigated its origin at 12.5% Cr doping using a combination of ab-initio electronic structure calculations as well as microscopic modeling. Our calculations are found to reproduce the ferromagnetic insulating state as well as a charge ordering at the V and Cr sites. The mapping of the ab-initio band structure onto a tight-binding Hamiltonian allows one to calculate the energy gain from different exchange pathways. This gain is quantified in this work for the first time and the role of charge ordering in stabilizing a ferromagnetic insulating state is understood.
The anomalous Hall effect (AHE) is a non-linear Hall effect appearing in magnetic conductors, boosted by internal magnetism beyond what is expected from the ordinary Hall effect. With the recent discovery of the quantized version of the AHE, the quan
Bimetal transition iodides in two-dimensional scale provide an interesting idea to combine a set of single-transition-metal ferromagnetic semiconductors together. Motivated by structural engineering on bilayer CrI$_3$ to tune its magnetism and works
We report a theoretical and experimental investigation of Cr-doped AlN. Density functional calculations predict that the isolated Cr t2 defect level in AlN is 1/3 full, falls approximately at midgap, and broadens into an impurity band for concentrati
Ferromagnetic insulators (FMIs) are one of the most important components in developing dissipationless electronic and spintronic devices. However, since ferromagnetism generally accompanies metallicity, FMIs are innately rare to find in nature. Here,
Dedicated control of oxygen vacancies is an important route to functionalizing complex oxide films. It is well-known that tensile strain significantly lowers the oxygen vacancy formation energy, whereas compressive strain plays a minor role. Thus, at