ﻻ يوجد ملخص باللغة العربية
Dense crowd counting aims to predict thousands of human instances from an image, by calculating integrals of a density map over image pixels. Existing approaches mainly suffer from the extreme density variances. Such density pattern shift poses challenges even for multi-scale model ensembling. In this paper, we propose a simple yet effective approach to tackle this problem. First, a patch-level density map is extracted by a density estimation model and further grouped into several density levels which are determined over full datasets. Second, each patch density map is automatically normalized by an online center learning strategy with a multipolar center loss. Such a design can significantly condense the density distribution into several clusters, and enable that the density variance can be learned by a single model. Extensive experiments demonstrate the superiority of the proposed method. Our work outperforms the state-of-the-art by 4.2%, 14.3%, 27.1% and 20.1% in MAE, on ShanghaiTech Part A, ShanghaiTech Part B, UCF_CC_50 and UCF-QNRF datasets, respectively.
Recent works on crowd counting mainly leverage Convolutional Neural Networks (CNNs) to count by regressing density maps, and have achieved great progress. In the density map, each person is represented by a Gaussian blob, and the final count is obtai
Crowd counting is a challenging task due to the issues such as scale variation and perspective variation in real crowd scenes. In this paper, we propose a novel Cascaded Residual Density Network (CRDNet) in a coarse-to-fine approach to generate the h
State-of-the-art multi-object tracking~(MOT) methods follow the tracking-by-detection paradigm, where object trajectories are obtained by associating per-frame outputs of object detectors. In crowded scenes, however, detectors often fail to obtain ac
In this paper, we propose a novel map for dense crowd localization and crowd counting. Most crowd counting methods utilize convolution neural networks (CNN) to regress a density map, achieving significant progress recently. However, these regression-
Occlusions, complex backgrounds, scale variations and non-uniform distributions present great challenges for crowd counting in practical applications. In this paper, we propose a novel method using an attention model to exploit head locations which a