ﻻ يوجد ملخص باللغة العربية
We study the quasiprobability representation of quantum light, as introduced by Glauber and Sudarshan, for the unified characterization of quantum phenomena. We begin with reviewing the past and current impact of this technique. Regularization and convolution methods are specifically considered since they are accessible in experiments. We further discuss more general quantum systems for which the concept of negative probabilities can be generalized, being highly relevant for quantum information science. For analyzing quantum superpositions, we apply recently developed approaches to visualize quantum coherence of states via negative quasiprobability representations, including regularized quasiprobabilities for light and more general quantum correlated systems.
Quasiprobability distributions (QDs) in open quantum systems are investigated for $SU(2)$, spin like systems, having relevance to quantum optics and information. In this work, effect of both quantum non-demolition (QND) and dissipative open quantum s
It is well known that the squeezing spectrum of the field exiting a nonlinear cavity can be directly obtained from the fluctuation spectrum of normally ordered products of creation and annihilation operators of the cavity mode. In this article we sho
A mapping between operators on the Hilbert space of $N$-dimensional quantum system and the Wigner quasiprobability distributions defined on the symplectic flag manifold is discussed. The Wigner quasiprobability distribution is constructed as a dual p
We present a method for computing the action of conditional linear optical transformations, conditioned on photon counting, for arbitrary signal states. The method is based on the Q-function, a quasi probability distribution for anti normally ordered
Measurement incompatibility is a distinguishing property of quantum physics and an essential resource for many quantum information processing tasks. We introduce an approach to verify the joint measurability of measurements based on phase-space quasi