ترغب بنشر مسار تعليمي؟ اضغط هنا

Necessities and sufficiencies of a class of permutation polynomials over finite fields

75   0   0.0 ( 0 )
 نشر من قبل Xiaogang Liu
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Xiaogang Liu




اسأل ChatGPT حول البحث

For the finite field $mathbb{F}_{2^{3m}}$, permutation polynomials of the form $(x^{2^m}+x+delta)^{s}+cx$ are studied. Necessary and sufficient conditions are given for the polynomials to be permutation polynomials. For this, the structures and properties of the field elements are analyzed.



قيم البحث

اقرأ أيضاً

172 - Xiaogang Liu 2019
Permutation polynomials over finite fields have important applications in many areas of science and engineering such as coding theory, cryptography, combinatorial design, etc. In this paper, we construct several new classes of permutation polynomials , and the necessities of some permutation polynomials are studied.
70 - Xiaogang Liu 2019
Permutation polynomials have many applications in finite fields theory, coding theory, cryptography, combinatorial design, communication theory, and so on. Permutation binomials of the form $x^{r}(x^{q-1}+a)$ over $mathbb{F}_{q^2}$ have been studied before, K. Li, L. Qu and X. Chen proved that they are permutation polynomials if and only if $r=1$ and $a^{q+1} ot=1$. In this paper, we consider the same binomial, but over finite fields $mathbb{F}_{q^3}$ and $mathbb{F}_{q^e}$. Two different kinds of methods are employed, and some partial results are obtained for them.
259 - Xiaogang Liu 2019
Let $mathbb{F}_q$ denote the finite fields with $q$ elements. The permutation behavior of several classes of infinite families of permutation polynomials over finite fields have been studied in recent years. In this paper, we continue with their stud ies, and get some further results about the permutation properties of the permutation polynomials. Also, some new classes of permutation polynomials are constructed. For these, we alter the coefficients, exponents or the underlying fields, etc.
In this work we establish some new interleavers based on permutation functions. The inverses of these interleavers are known over a finite field $mathbb{F}_q$. For the first time M{o}bius and Redei functions are used to give new deterministic interle avers. Furthermore we employ Skolem sequences in order to find new interleavers with known cycle structure. In the case of Redei functions an exact formula for the inverse function is derived. The cycle structure of Redei functions is also investigated. The self-inverse and non-self-inver
In this paper, we investigate the power functions $F(x)=x^d$ over the finite field $mathbb{F}_{2^{4n}}$, where $n$ is a positive integer and $d=2^{3n}+2^{2n}+2^{n}-1$. It is proved that $F(x)=x^d$ is APcN at certain $c$s in $mathbb{F}_{2^{4n}}$, and it is the second class of APcN power functions over finite fields of even characteristic. Further, the $c$-differential spectrum of these power functions is also determined.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا