ﻻ يوجد ملخص باللغة العربية
For the finite field $mathbb{F}_{2^{3m}}$, permutation polynomials of the form $(x^{2^m}+x+delta)^{s}+cx$ are studied. Necessary and sufficient conditions are given for the polynomials to be permutation polynomials. For this, the structures and properties of the field elements are analyzed.
Permutation polynomials over finite fields have important applications in many areas of science and engineering such as coding theory, cryptography, combinatorial design, etc. In this paper, we construct several new classes of permutation polynomials
Permutation polynomials have many applications in finite fields theory, coding theory, cryptography, combinatorial design, communication theory, and so on. Permutation binomials of the form $x^{r}(x^{q-1}+a)$ over $mathbb{F}_{q^2}$ have been studied
Let $mathbb{F}_q$ denote the finite fields with $q$ elements. The permutation behavior of several classes of infinite families of permutation polynomials over finite fields have been studied in recent years. In this paper, we continue with their stud
In this work we establish some new interleavers based on permutation functions. The inverses of these interleavers are known over a finite field $mathbb{F}_q$. For the first time M{o}bius and Redei functions are used to give new deterministic interle
In this paper, we investigate the power functions $F(x)=x^d$ over the finite field $mathbb{F}_{2^{4n}}$, where $n$ is a positive integer and $d=2^{3n}+2^{2n}+2^{n}-1$. It is proved that $F(x)=x^d$ is APcN at certain $c$s in $mathbb{F}_{2^{4n}}$, and