ترغب بنشر مسار تعليمي؟ اضغط هنا

Differential Scene Flow from Light Field Gradients

69   0   0.0 ( 0 )
 نشر من قبل Sizhuo Ma
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents novel techniques for recovering 3D dense scene flow, based on differential analysis of 4D light fields. The key enabling result is a per-ray linear equation, called the ray flow equation, that relates 3D scene flow to 4D light field gradients. The ray flow equation is invariant to 3D scene structure and applicable to a general class of scenes, but is under-constrained (3 unknowns per equation). Thus, additional constraints must be imposed to recover motion. We develop two families of scene flow algorithms by leveraging the structural similarity between ray flow and optical flow equations: local Lucas-Kanade ray flow and global Horn-Schunck ray flow, inspired by corresponding optical flow methods. We also develop a combined local-global method by utilizing the correspondence structure in the light fields. We demonstrate high precision 3D scene flow recovery for a wide range of scenarios, including rotation and non-rigid motion. We analyze the theoretical and practical performance limits of the proposed techniques via the light field structure tensor, a 3x3 matrix that encodes the local structure of light fields. We envision that the proposed analysis and algorithms will lead to design of future light-field cameras that are optimized for motion sensing, in addition to depth sensing.



قيم البحث

اقرأ أيضاً

Existing works on motion deblurring either ignore the effects of depth-dependent blur or work with the assumption of a multi-layered scene wherein each layer is modeled in the form of fronto-parallel plane. In this work, we consider the case of 3D sc enes with piecewise planar structure i.e., a scene that can be modeled as a combination of multiple planes with arbitrary orientations. We first propose an approach for estimation of normal of a planar scene from a single motion blurred observation. We then develop an algorithm for automatic recovery of a number of planes, the parameters corresponding to each plane, and camera motion from a single motion blurred image of a multiplanar 3D scene. Finally, we propose a first-of-its-kind approach to recover the planar geometry and latent image of the scene by adopting an alternating minimization framework built on our findings. Experiments on synthetic and real data reveal that our proposed method achieves state-of-the-art results.
Scene flow is the three-dimensional (3D) motion field of a scene. It provides information about the spatial arrangement and rate of change of objects in dynamic environments. Current learning-based approaches seek to estimate the scene flow directly from point clouds and have achieved state-of-the-art performance. However, supervised learning methods are inherently domain specific and require a large amount of labeled data. Annotation of scene flow on real-world point clouds is expensive and challenging, and the lack of such datasets has recently sparked interest in self-supervised learning methods. How to accurately and robustly learn scene flow representations without labeled real-world data is still an open problem. Here we present a simple and interpretable objective function to recover the scene flow from point clouds. We use the graph Laplacian of a point cloud to regularize the scene flow to be as-rigid-as-possible. Our proposed objective function can be used with or without learning---as a self-supervisory signal to learn scene flow representations, or as a non-learning-based method in which the scene flow is optimized during runtime. Our approach outperforms related works in many datasets. We also show the immediate applications of our proposed method for two applications: motion segmentation and point cloud densification.
Inferring representations of 3D scenes from 2D observations is a fundamental problem of computer graphics, computer vision, and artificial intelligence. Emerging 3D-structured neural scene representations are a promising approach to 3D scene understa nding. In this work, we propose a novel neural scene representation, Light Field Networks or LFNs, which represent both geometry and appearance of the underlying 3D scene in a 360-degree, four-dimensional light field parameterized via a neural implicit representation. Rendering a ray from an LFN requires only a *single* network evaluation, as opposed to hundreds of evaluations per ray for ray-marching or volumetric based renderers in 3D-structured neural scene representations. In the setting of simple scenes, we leverage meta-learning to learn a prior over LFNs that enables multi-view consistent light field reconstruction from as little as a single image observation. This results in dramatic reductions in time and memory complexity, and enables real-time rendering. The cost of storing a 360-degree light field via an LFN is two orders of magnitude lower than conventional methods such as the Lumigraph. Utilizing the analytical differentiability of neural implicit representations and a novel parameterization of light space, we further demonstrate the extraction of sparse depth maps from LFNs.
We propose a new technique for computing dense scene flow from two handheld videos with wide camera baselines and different photometric properties due to different sensors or camera settings like exposure and white balance. Our technique innovates in two ways over existing methods: (1) it supports independently moving cameras, and (2) it computes dense scene flow for wide-baseline scenarios.We achieve this by combining state-of-the-art wide-baseline correspondence finding with a variational scene flow formulation. First, we compute dense, wide-baseline correspondences using DAISY descriptors for matching between cameras and over time. We then detect and replace occluded pixels in the correspondence fields using a novel edge-preserving Laplacian correspondence completion technique. We finally refine the computed correspondence fields in a variational scene flow formulation. We show dense scene flow results computed from challenging datasets with independently moving, handheld cameras of varying camera settings.
Autonomous vehicles operate in highly dynamic environments necessitating an accurate assessment of which aspects of a scene are moving and where they are moving to. A popular approach to 3D motion estimation, termed scene flow, is to employ 3D point cloud data from consecutive LiDAR scans, although such approaches have been limited by the small size of real-world, annotated LiDAR data. In this work, we introduce a new large-scale dataset for scene flow estimation derived from corresponding tracked 3D objects, which is $sim$1,000$times$ larger than previous real-world datasets in terms of the number of annotated frames. We demonstrate how previous works were bounded based on the amount of real LiDAR data available, suggesting that larger datasets are required to achieve state-of-the-art predictive performance. Furthermore, we show how previous heuristics for operating on point clouds such as down-sampling heavily degrade performance, motivating a new class of models that are tractable on the full point cloud. To address this issue, we introduce the FastFlow3D architecture which provides real time inference on the full point cloud. Additionally, we design human-interpretable metrics that better capture real world aspects by accounting for ego-motion and providing breakdowns per object type. We hope that this dataset may provide new opportunities for developing real world scene flow systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا