ﻻ يوجد ملخص باللغة العربية
We report the discovery of an exoplanet in microlensing event OGLE-2015-BLG-1649. The planet/host-star mass ratio is $q =7.2 times 10^{-3}$ and the projected separation normalized by the Einstein radius is $s = 0.9$. The upper limit of the lens flux is obtained from adaptive optics observations by IRCS/Subaru, which excludes the probability of a G-dwarf or more massive host star and helps to put a tighter constraint on the lens mass as well as commenting on the formation scenarios of giant planets orbiting low-mass stars. We conduct a Bayesian analysis including constraints on the lens flux to derive the probability distribution of the physical parameters of the lens system. We thereby find that the masses of the host star and planet are $M_{L} = 0.34 pm 0.19 M_{odot}$ and $M_{p} = 2.5^{+1.5}_{-1.4} M_{Jup}$, respectively. The distance to the system is $D_{L} = 4.23^{+1.51}_{-1.64}$kpc. The projected star-planet separation is $a_{perp} = 2.07^{+0.65}_{-0.77}$AU. The lens-source relative proper motion of the event is quite high, at $sim 7.1 , {rm mas/yr}$. Therefore, we may be able to determine the lens physical parameters uniquely or place much stronger constraints on them by measuring the color-dependent centroid shift and/or the image elongation with additional high resolution imaging already a few years from now.
We report the discovery of an extrasolar planet detected from the combined data of a microlensing event OGLE-2015-BLG-0051/KMT-2015-BLG-0048 acquired by two microlensing surveys. Despite that the short planetary signal occurred in the very early Bulg
We report the analysis of planetary microlensing event OGLE-2018-BLG-1185, which was observed by a large number of ground-based telescopes and by the $Spitzer$ Space Telescope. The ground-based light curve indicates a low planet-host star mass ratio
We report the discovery of a planet by the microlensing method, OGLE-2012-BLG-0724Lb. Although the duration of the planetary signal for this event was one of the shortest seen for a planetary event, the anomaly was well covered thanks to high cadence
We report the discovery and the analysis of the short (tE < 5 days) planetary microlensing event, OGLE-2015-BLG-1771. The event was discovered by the Optical Gravitational Lensing Experiment (OGLE), and the planetary anomaly (at I ~ 19) was captured
We report the discovery of a $Spitzer$ microlensing planet OGLE-2018-BLG-0596Lb, with preferred planet-host mass ratio $q sim 2times10^{-4}$. The planetary signal, which is characterized by a short $(sim 1~{rm day})$ bump on the rising side of the le