ترغب بنشر مسار تعليمي؟ اضغط هنا

Space versus energy oscillations of Prufer phases for matrix Sturm-Liouville and Jacobi operators

157   0   0.0 ( 0 )
 نشر من قبل Hermann Schulz-Baldes
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This note considers Sturm oscillation theory for regular matrix Sturm-Liouville operators on finite intervals and for matrix Jacobi operators. The number of space oscillations of the eigenvalues of the matrix Prufer phases at a given energy, defined by a suitable lift in the Jacobi case, is shown to be equal to the number of eigenvalues below that energy. This results from a positivity property of the Prufer phases, namely they cannot cross $-1$ in the negative direction, and is also shown to be closely linked to the positivity of the matrix Prufer phase in the energy variable. The theory is illustrated by numerical calculations for an explicit example.

قيم البحث

اقرأ أيضاً

120 - Evgeny Korotyaev 2020
We consider Sturm-Liouville problems on the finite interval. We show that spectral data for the case of Dirichlet boundary conditions are equivalent to spectral data for Neumann boundary conditions. In particular, the solution of the inverse problem for the first one is equivalent to the solution of the inverse problem for the second one. Moreover, we discuss similar results for other Sturm-Liouville problems, including a periodic case.
104 - B. Konya , G. Levai , Z. Papp 1997
We propose two ways for determining the Greens matrix for problems admitting Hamiltonians that have infinite symmetric tridiagonal (i.e. Jacobi) matrix form on some basis representation. In addition to the recurrence relation comming from the Jacobi- matrix, the first approach also requires the matrix elements of the Greens operator between the first elements of the basis. In the second approach the recurrence relation is solved directly by continued fractions and the solution is continued analytically to the whole complex plane. Both approaches are illustrated with the non-trivial but calculable example of the D-dimensional Coulomb Greens matrix. We give the corresponding formulas for the D-dimensional harmonic oscillator as well.
We study perturbations of the self-adjoint periodic Sturm--Liouville operator [ A_0 = frac{1}{r_0}left(-frac{mathrm d}{mathrm dx} p_0 frac{mathrm d}{mathrm dx} + q_0right) ] and conclude under $L^1$-assumptions on the differences of the coefficient s that the essential spectrum and absolutely continuous spectrum remain the same. If a finite first moment condition holds for the differences of the coefficients, then at most finitely many eigenvalues appear in the spectral gaps. This observation extends a seminal result by Rofe-Beketov from the 1960s. Finally, imposing a second moment condition we show that the band edges are no eigenvalues of the perturbed operator.
Let $dot A$ be a densely defined, closed, symmetric operator in the complex, separable Hilbert space $mathcal{H}$ with equal deficiency indices and denote by $mathcal{N}_i = ker big(big(dot Abig)^* - i I_{mathcal{H}}big)$, $dim , (mathcal{N}_i)=kin m athbb{N} cup {infty}$, the associated deficiency subspace of $dot A$ . If $A$ denotes a self-adjoint extension of $dot A$ in $mathcal{H}$, the Donoghue $m$-operator $M_{A,mathcal{N}_i}^{Do} (, cdot ,)$ in $mathcal{N}_i$ associated with the pair $(A,mathcal{N}_i)$ is given by [ M_{A,mathcal{N}_i}^{Do}(z)=zI_{mathcal{N}_i} + (z^2+1) P_{mathcal{N}_i} (A - z I_{mathcal{H}})^{-1} P_{mathcal{N}_i} bigvert_{mathcal{N}_i},, quad zin mathbb{C} backslash mathbb{R}, ] with $I_{mathcal{N}_i}$ the identity operator in $mathcal{N}_i$, and $P_{mathcal{N}_i}$ the orthogonal projection in $mathcal{H}$ onto $mathcal{N}_i$. Assuming the standard local integrability hypotheses on the coefficients $p, q,r$, we study all self-adjoint realizations corresponding to the differential expression [ tau=frac{1}{r(x)}left[-frac{d}{dx}p(x)frac{d}{dx} + q(x)right] , text{ for a.e. $xin(a,b) subseteq mathbb{R}$,} ] in $L^2((a,b); rdx)$, and, as the principal aim of this paper, systematically construct the associated Donoghue $m$-functions (resp., $2 times 2$ matrices) in all cases where $tau$ is in the limit circle case at least at one interval endpoint $a$ or $b$.
Explicit formulas for the analytic extensions of the scattering matrix and the time delay of a quasi-one-dimensional discrete Schrodinger operator with a potential of finite support are derived. This includes a careful analysis of the band edge singu larities and allows to prove a Levinson-type theorem. The main algebraic tool are the plane wave transfer matrices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا