ﻻ يوجد ملخص باللغة العربية
Jupiter Trojan asteroids are minor bodies that share Jupiters orbit around the Sun. Although not yet well understood in origin and composition, they have surface properties that, besides being comparable with other populations of small bodies in the Solar System, hold information that may restrict models of planetary formation. Due their importance, there has been a significant increase in an interest in studying this population. In this context arises the NASA Lucy Mission, with a planned launch of 2021. The Lucy Mission will be the first one to address a group of 6 objects with the aim of investigating, in detail, their nature. In order to provide valuable information for mission planning and maximize the scientific return, we carried out ground based observations of four targets of the mission. Aimed at looking for variabilities on the spectra of (3548) Eurybates, (15094) Polymele and (21900) Orus, we performed rotationally resolved visible spectroscopy of them at SOAR Telescope. We also analyzed the first visible spectrum obtained for the main belt asteroid (52246) Donaldjohanson at Gran Telescopio Canarias. The spectra of Orus and Polymele present rather homogeneous characteristics along the surfaces, and their taxa correspond with those of the two dominant populations in the Trojan population, the P- and the D-type group of objects. Spectroscopy of Eurybates, on the other side, suggests that some variation on the characteristics of the reflectance of this body could be related with its collisional history. Donaldjohanson, the only main belt object in the group of targets, shows, according to our visible spectrum, hints of the presence of hydrated materials. Lucy mission will investigate the surface composition of these targets and will shed light on their connections with other minor bodies populations and in their role on the evolution of the Solar System.
We describe the discovery of a satellite of the Trojan asteroid (3548) Eurybates in images obtained with the Hubble Space Telescope. The satellite was detected on three separate epochs, two in September 2018 and one in January 2020. The satellite has
We report near-infrared (0.7-2.5 micron) reflectance spectra for each of the six target asteroids of the forthcoming NASA Discovery-class mission Lucy. Five Jupiter Trojans (the binary (617) Patroclus system, (3548) Eurybates, (21900) Orus, (11351) L
In 2016, the NASA Juno spacecraft will initiate its one-year mission around Jupiter and become the first probe to explore the polar regions of Jupiter. The HST UV instruments (STIS and ACS) can greatly contribute to the success of the Juno mission by
The Lucy Mission accomplishes its science during a series of five flyby encounters with seven Trojan asteroid targets. This mission architecture drives a concept of operations design that maximizes science return, provides redundancy in observations
The NASA Exoplanet Program Analysis Group (ExoPAG) has undertaken an effort to define mission Level 1 requirements for exoplanet direct detection missions at a range of sizes. This report outlines the science goals and requirements for the next exopl