ترغب بنشر مسار تعليمي؟ اضغط هنا

Synthetic tracking using ZTF Long Dwell Datasets

100   0   0.0 ( 0 )
 نشر من قبل Chengxing Zhai
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Zwicky Transit Factory (ZTF) is a powerful time domain survey facility with a large field of view. We apply the synthetic tracking technique to integrate a ZTFs long-dwell dataset, which consists of 133 nominal 30-second exposure frames spanning about 1.5 hours, to search for slowly moving asteroids down to approximately 23rd magnitude. We found more than one thousand objects from searching 40 CCD-quadrant subfields, each of which covers a field size of $sim$0.73 deg$^2$. While most of the objects are main belt asteroids, there are asteroids belonging to families of Trojan, Hilda, Hungaria, Phocaea, and near-Earth-asteroids. Such an approach is effective and productive. Here we report the data process and results.



قيم البحث

اقرأ أيضاً

Accurate astrometry is crucial for determining orbits of near-Earth-asteroids (NEAs) and therefore better tracking them. This paper reports on a demonstration of 10 milliarcsecond-level astrometric precision on a dozen NEAs using the Pomona College 4 0 inch telescope, at the JPLs Table Mountain Facility. We used the technique of synthetic tracking, in which many short exposure (1 second) images are acquired and then combined in post-processing to track both target asteroid and reference stars across the field of view. This technique avoids the trailing loss and keeps the jitter effects from atmosphere and telescope pointing common between the asteroid and reference stars, resulting in higher astrometric precision than the 100 mas level astrometry from traditional approach of using long exposure images. Treating our synthetic tracking of near-Earth asteroids as a proxy for observations of future spacecraft while they are downlinking data via their high rate optical communication laser beams, our approach shows precision plane-of-sky measurements can be obtained by the optical ground terminals for navigation. We also discuss how future data releases from the Gaia mission can improve our results.
We report a detection of a faint near-Earth asteroid (NEA), which was done using our synthetic tracking technique and the CHIMERA instrument on the Palomar 200-inch telescope. This asteroid, with apparent magnitude of 23, was moving at 5.97 degrees p er day and was detected at a signal-to-noise ratio (SNR) of 15 using 30 sec of data taken at a 16.7 Hz frame rate. The detection was confirmed by a second observation one hour later at the same SNR. The asteroid moved 7 arcseconds in sky over the 30 sec of integration time because of its high proper motion. The synthetic tracking using 16.7 Hz frames avoided the trailing loss suffered by conventional techniques relying on 30-sec exposure, which would degrade the surface brightness of image on CCD to an approximate magnitude of 25. This detection was a result of our 12-hour blind search conducted on the Palomar 200-inch telescope over two nights on September 11 and 12, 2013 scanning twice over six 5.0 deg x 0.043 deg fields. The fact that we detected only one NEA, is consistent with Harriss estimation of the asteroid population distribution, which was used to predict the detection of 1--2 asteroids of absolute magnitude H=28--31 per night. The design of experiment, data analysis method, and algorithms for estimating astrometry are presented. We also demonstrate a milli-arcsecond astrometry using observations of two bright asteroids with the same system on Apr 3, 2013. Strategies of scheduling observations to detect small and fast-moving NEAs with the synthetic tracking technique are discussed.
We report results from analyzing the B612 asteroid observation data taken by the sCMOS cameras on board of Planet SkySat-3 using the synthetic tracking technique. The analysis demonstrates the expected sensitivity improvement in the signal-to-noise r atio of the asteroids from properly stacking up the the short exposure images in post-processing.
The goal of program synthesis is to automatically generate programs in a particular language from corresponding specifications, e.g. input-output behavior. Many current approaches achieve impressive results after training on randomly generated I/O ex amples in limited domain-specific languages (DSLs), as with string transformations in RobustFill. However, we empirically discover that applying test input generation techniques for languages with control flow and rich input space causes deep networks to generalize poorly to certain data distributions; to correct this, we propose a new methodology for controlling and evaluating the bias of synthetic data distributions over both programs and specifications. We demonstrate, using the Karel DSL and a small Calculator DSL, that training deep networks on these distributions leads to improved cross-distribution generalization performance.
The systematic monitoring of the solar wind in high-cadence and high-resolution heliospheric images taken by the Solar-Terrestrial Relation Observatory (STEREO) spacecraft permits the study of the spatial and temporal evolution of variable solar wind flows from the Sun out to 1~AU, and beyond. As part of the EU Framework 7 (FP7) Heliospheric Cataloguing, Analysis and Techniques Service (HELCATS) project, we have generated a catalogue listing the properties of 190 corotating structures well-observed in images taken by the Heliospheric Imager instruments on-board STEREO-A. We present here one of very few long-term analyses of solar wind structures advected by the background solar wind. This analysis confirms that most of the corotating density structures detected by the heliospheric imagers comprises a series of density inhomogeneities advected by the slow solar wind that eventually become entrained by stream interaction regions. We have derived the spatial-temporal evolution of each of these corotating density structures by using a well-established fitting technique. The mean radial propagation speed of the corotating structures is found to be $311 pm 31$ km~s$^{-1}$. We predicted the arrival time of each corotating density structure at different probes. We show that the speeds of the corotating density structures derived using our fitting technique track well the long-term variation of the radial speed of the slow solar wind during solar minimum years (2007--2008). Furthermore, we demonstrate that these features originate near the coronal neutral line that eventually becomes the heliospheric current sheet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا