ترغب بنشر مسار تعليمي؟ اضغط هنا

Splitting of antiferromagnetic resonance modes in the quasi-two-dimensional collinear antiferromagnet Cu(en)(H$_2$O)$_2$SO$_4$

86   0   0.0 ( 0 )
 نشر من قبل Vasiliy N. Glazkov
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Low-temperature magnetic resonance study of the quasi-two-dimensional antiferromagnet Cu(en)(H$_2$O)$_2$SO$_4$ (en = C$_2$H$_8$N$_2$) was performed down to 0.45~K. This compound orders antiferromagnetically at 0.9K. The analysis of the resonance data within the hydrodynamic approach allowed to identify anisotropy axes and to estimate the anisotropy parameters for the antiferromagnetic phase. Dipolar spin-spin coupling turns out to be the main contribution to the anisotropy of the antiferromagnetic phase. The splitting of the resonance modes and its non-monotonous dependency on the applied frequency was observed below 0.6K in all three field orientations. Several models were discussed to explain the origin of the nontrivial splitting and the existence of inequivalent magnetic subsystems in Cu(en)(H$_2$O)$_2$SO$_4$ was chosen as the most probable source.



قيم البحث

اقرأ أيضاً

Magnetic excitations of the recently discovered frustrated spin-1/2 two-leg ladder system Li$_2$Cu$_2$O(SO$_4$)$_2$ are investigated using inelastic neutron scattering, magnetic susceptibility and infrared absorption measurements. Despite the presenc e of a magnetic dimerization concomitant with the tetragonal-to-triclinic structural distortion occurring below 125 K, neutron scattering experiments reveal the presence of dispersive triplet excitations above a spin gap of $Delta = 10.6$ meV at 1.5 K, a value consistent with the estimates extracted from magnetic susceptibility. The likely detection of these spin excitations in infrared spectroscopy is explained by invoking a dynamic Dzyaloshinskii-Moriya mechanism in which light is coupled to the dimer singlet-to-triplet transition through an optical phonon. These results are qualitatively explained by exact diagonalization and higher-order perturbation calculations carried out on the basis of the dimerized spin Hamiltonian derived from first-principles.
Strongly correlated electrons in layered perovskite structures have been the birthplace of high-temperature superconductivity, spin liquid, and quantum criticality. Specifically, the cuprate materials with layered structures made of corner sharing sq uare planar CuO$_4$ units have been intensely studied due to their Mott insulating grounds state which leads to high-temperature superconductivity upon doping. Identifying new compounds with similar lattice and electronic structures has become a challenge in solid state chemistry. Here, we report the hydrothermal crystal growth of a new copper tellurite sulfate Cu$_3$(TeO$_4$)(SO$_4$)$cdot$H$_2$O, a promising alternative to layered perovskites. The orthorhombic phase (space group $Pnma$) is made of corrugated layers of corner-sharing CuO$_4$ square-planar units that are edge-shared with TeO$_4$ units. The layers are linked by slabs of corner-sharing CuO$_4$ and SO$_4$. Using both the bond valence sum analysis and magnetization data, we find purely Cu$^{2+}$ ions within the layers, but a mixed valence of Cu$^{2+}$/Cu${^+}$ between the layers. Cu$_3$(TeO$_4$)(SO$_4$)$cdot$H$_2$O undergoes an antiferromagnetic transition at $T_N$=67 K marked by a peak in the magnetic susceptibility. Upon further cooling, a spin-canting transition occurs at $T^{star}$=12 K evidenced by a kink in the heat capacity. The spin-canting transition is explained based on a $J_1$-$J_2$ model of magnetic interactions, which is consistent with the slightly different in-plane super-exchange paths. We present Cu$_3$(TeO$_4$)(SO$_4$)$cdot$H$_2$O as a promising platform for the future doping and strain experiments that could tune the Mott insulating ground state into superconducting or spin liquid states.
We report detailed neutron scattering studies on Ba$_2$Cu$_3$O$_4$Cl$_2$. The compound consists of two interpenetrating sublattices of Cu, labeled as Cu$_{rm A}$ and Cu$_{rm B}$, each of which forms a square-lattice Heisenberg antiferromagnet. The tw o sublattices order at different temperatures and effective exchange couplings within the sublattices differ by an order of magnitude. This yields an inelastic neutron spectrum of the Cu$_{rm A}$ sublattice extending up to 300 meV and a much weaker dispersion of Cu$_{rm B}$ going up to around 20 meV. Using a single-band Hubbard model we derive an effective spin Hamiltonian. From this, we find that linear spin-wave theory gives a good description to the magnetic spectrum. In addition, a magnetic field of 10 T is found to produce effects on the Cu$_{rm B}$ dispersion that cannot be explained by conventional spin-wave theory.
We report the magnetization ($chi$, $M$), specific heat ($C_{text{P}}$), and neutron powder diffraction results on a quasi-two-dimensional $S$ = 2 square lattice antiferromagnet Ba$_2$FeSi$_2$O$_7$ consisting of FeO$_4$ tetragons with a large compres sive distortion (27%). Despite of the quasi-two-dimensional lattice structure, both $chi$ and $C_{text{P}}$ present three dimensional magnetic long-range order below the Neel temperature $T_{text{N}}$ = 5.2 K. Neutron diffraction data shows a collinear $Q_{m}$ = (1,0,0.5) antiferromagnetic (AFM) structure with the in-plane ordered magnetic moment suppressed by 26% below $T_{text{N}}$. Both the AFM structure and the suppressed moments are well explained by the Monte Carlo simulation with a large single-ion ab-plane anisotropy $D$ = 1.4 meV and a rather small in-plane Heisenberg exchange $J_{text{intra}}$ = 0.15 meV. The characteristic two dimensional spin fluctuations can be recognized in the magnetic entropy release and diffuse scattering above $T_{text{N}}$. This new quasi-2D magnetic system also displays unusual non-monotonic dependence of the $T_{text{N}}$ as a function of magnetic field $H$.
CaV$_2$O$_4$ is a spin-1 antiferromagnet, where the magnetic vanadium ions are arranged on quasi-one-dimensional (1D) zig-zag chains with potentially frustrated antiferromagnetic exchange interactions. High temperature susceptibility and single-cryst al neutron diffraction measurements are used to deduce the non-collinear magnetic structure, dominant exchange interactions and orbital configurations. The results suggest that at high temperatures CaV$_2$O$_4$ behaves as a Haldane chain, but at low temperatures, orbital ordering lifts the frustration and it becomes a spin-1 ladder.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا