ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent Results from The Askaryan Radio Array

76   0   0.0 ( 0 )
 نشر من قبل Amy Connolly
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Askaryan Radio Array (ARA) is an ultra-high energy (UHE) neutrino telescope at the South Pole consisting of an array of radio antennas aimed at detecting the Askaryan radiation produced by neutrino interactions in the ice. Currently, the experiment has five stations in operation that have been deployed in stages since 2012. This contribution focuses on the development of a search for a diffuse flux of neutrinos in two ARA stations (A2 and A3) from 2013-2016. A background of $sim 0.01-0.02$ events is expected in one station in each of two search channels in horizontal- and vertical-polarizations. The expected new constraints on the flux of ultra-high energy neutrinos based on four years of analysis with two stations improve on the previous limits set by ARA by a factor of about two. The projected sensitivity of ARAs five-station dataset is beginning to be competitive with other neutrino telescopes at high energies near $10^{10.5},$GeV.

قيم البحث

اقرأ أيضاً

Ultra-high energy neutrinos are interesting messenger particles since, if detected, they can transmit exclusive information about ultra-high energy processes in the Universe. These particles, with energies above $10^{16}mathrm{eV}$, interact very rar ely. Therefore, detectors that instrument several gigatons of matter are needed to discover them. The ARA detector is currently being constructed at South Pole. It is designed to use the Askaryan effect, the emission of radio waves from neutrino-induced cascades in the South Pole ice, to detect neutrino interactions at very high energies. With antennas distributed among 37 widely-separated stations in the ice, such interactions can be observed in a volume of several hundred cubic kilometers. Currently 3 deep ARA stations are deployed in the ice of which two have been taking data since the beginning of the year 2013. In this publication, the ARA detector as-built and calibrations are described. Furthermore, the data reduction methods used to distinguish the rare radio signals from overwhelming backgrounds of thermal and anthropogenic origin are presented. Using data from only two stations over a short exposure time of 10 months, a neutrino flux limit of $3 cdot 10^{-6} mathrm{GeV} / (mathrm{cm^2 s sr})$ is calculated for a particle energy of 10^{18}eV, which offers promise for the full ARA detector.
The Askaryan Radio Array (ARA) is an ultra-high energy (UHE, $>10^{17}$ eV) neutrino detector designed to observe neutrinos by searching for the radio waves emitted by the relativistic products of neutrino-nucleon interactions in Antarctic ice. In th is paper, we present constraints on the diffuse flux of ultra-high energy neutrinos between $10^{16}-10^{21}$ eV resulting from a search for neutrinos in two complementary analyses, both analyzing four years of data (2013-2016) from the two deep stations (A2, A3) operating at that time. We place a 90 % CL upper limit on the diffuse all flavor neutrino flux at $10^{18}$ eV of $EF(E)=5.6times10^{-16}$ $textrm{cm}^{-2}$$textrm{s}^{-1}$$textrm{sr}^{-1}$. This analysis includes four times the exposure of the previous ARA result, and represents approximately 1/5 the exposure expected from operating ARA until the end of 2022.
The Askaryan Radio Array (ARA) reports an observation of radio emission coincident with the Valentines Day solar flare on Feb. 15$^{rm{th}}$, 2011 in the prototype Testbed station. We find $sim2000$ events that passed our neutrino search criteria dur ing the 70 minute period of the flare, all of which reconstruct to the location of the sun. A signal analysis of the events reveals them to be consistent with that of bright thermal noise correlated across antennas. This is the first natural source of radio emission reported by ARA that is tightly reconstructable on an event-by-event basis. The observation is also the first for ARA to point radio from individual events to an extraterrestrial source on the sky. We comment on how the solar flares, coupled with improved systematic uncertainties in reconstruction algorithms, could aid in a mapping of any above-ice radio emission, such as that from cosmic-ray air showers, to astronomical locations on the sky.
We report on a search for ultra-high-energy (UHE) neutrinos from gamma-ray bursts (GRBs) in the data set collected by the Testbed station of the Askaryan Radio Array (ARA) in 2011 and 2012. From 57 selected GRBs, we observed no events that survive ou r cuts, which is consistent with 0.12 expected background events. Using NeuCosmA as a numerical GRB reference emission model, we estimate upper limits on the prompt UHE GRB neutrino fluence and quasi-diffuse flux from $10^{7}$ to $10^{10}$ GeV. This is the first limit on the prompt UHE GRB neutrino quasi-diffuse flux above $10^{7}$ GeV.
391 - Todor Stanev 2009
We describe the design and performance of IceTop, the air shower array on top of the IceCube neutrino detector. After the 2008/09 antarctic summer season both detectors are deployed at almost 3/4 of their design size. With the current IceTop 59 stati ons we can start the study of showers of energy well above 10$^{17}$ eV. The paper also describes the first results from IceTop and our plans to study the cosmic ray composition using several different types of analysis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا