ﻻ يوجد ملخص باللغة العربية
We present different transport measurements up to fields of 29~T in the recently discovered heavy-fermion superconductor UTe$_{2}$ with magnetic field $H$ applied along the easy magnetization a-axis of the body-centered orthorhombic structure. The thermoelectric power varies linearly with temperature above the superconducting transition, $T_{SC}= 1.5$ K, indicating that superconductivity develops in a Fermi liquid regime. As a function of field the thermolelectric power shows successive anomalies which are attributed to field-induced Fermi surface instabilities. These Fermi-surface instabilities appear at critical values of the magnetic polarization. Remarkably, the lowest magnetic field instability for $Hparallel a$ occurs for the same critical value of the magnetization (0.4 $mu_B$) than the first order metamagnetic transition at 35~T for field applied along the $b$-axis. The estimated number of charge carriers at low temperature reveals a metallic ground state distinct from LDA calculations indicating that strong electronic correlations are a major issue in this compound.
We have investigated the de Haas-van Alphen effect in the Pr-based heavy fermion superconductor PrOs$_4$Sb$_{12}$.The topology of Fermi surface is close to the reference compound LaOs$_4$Sb$_{12}$ and well explained by the band structure calculation
The field-reentrant (field-reinforced) superconductivity on ferromagnetic superconductors is one of the most interesting topics in unconventional superconductivity. The enhancement of effective mass and the induced ferromagnetic fluctuations play key
We grew single crystals of the recently discovered heavy fermion superconductor UTe2, and measured the resistivity, specific heat and magnetoresistance. Superconductivity (SC) was clearly detected at Tsc=1.65K as sharp drop of the resistivity in a hi
We report 125Te-NMR studies on a newly discovered heavy fermion superconductor UTe2. Using a single crystal, we have measured the 125Te-NMR Knight shift K and spin-lattice relaxation rate 1/T1 for fields along the three orthorhombic crystal axes. The
We present a detailed quantum oscillation study of the Fermi surface of the recently discovered Yb-based heavy fermion superconductor beta-YbAlB4 . We compare the data, obtained at fields from 10 to 45 Tesla, to band structure calculations performed