ﻻ يوجد ملخص باللغة العربية
Inspired by the decomposition in the hybrid quantum-classical optimization algorithm we introduced in arXiv:1902.04215, we propose here a new (fully classical) approach to solving certain non-convex integer programs using Graver bases. This method is well suited when (a) the constraint matrix $A$ has a special structure so that its Graver basis can be computed systematically, (b) several feasible solutions can also be constructed easily and (c) the objective function can be viewed as many convex functions quilted together. Classes of problems that satisfy these conditions include Cardinality Boolean Quadratic Problems (CBQP), Quadratic Semi-Assignment Problems (QSAP) and Quadratic Assignment Problems (QAP). Our Graver Augmented Multi-seed Algorithm (GAMA) utilizes augmentation along Graver basis elements (the improvement direction is obtained by comparing objective function values) from these multiple initial feasible solutions. We compare our approach with a best-in-class commercially available solver (Gurobi). Sensitivity analysis indicates that the rate at which GAMA slows down as the problem size increases is much lower than that of Gurobi. We find that for several instances of practical relevance, GAMA not only vastly outperforms in terms of time to find the optimal solution (by two or three orders of magnitude), but also finds optimal solutions within minutes when the commercial solver is not able to do so in 4 or 10 hours (depending on the problem class) in several cases.
For each integer $n$ we present an explicit formulation of a compact linear program, with $O(n^3)$ variables and constraints, which determines the satisfiability of any 2SAT formula with $n$ boolean variables by a single linear optimization. This con
Large Neighborhood Search (LNS) is a combinatorial optimization heuristic that starts with an assignment of values for the variables to be optimized, and iteratively improves it by searching a large neighborhood around the current assignment. In this
We study constrained stochastic programs where the decision vector at each time slot cannot be chosen freely but is tied to the realization of an underlying random state vector. The goal is to minimize a general objective function subject to linear c
This paper investigates accelerating the convergence of distributed optimization algorithms on non-convex problems. We propose a distributed primal-dual stochastic gradient descent~(SGD) equipped with powerball method to accelerate. We show that the
We propose a novel hybrid quantum-classical approach to calculate Graver bases, which have the potential to solve a variety of hard linear and non-linear integer programs, as they form a test set (optimality certificate) with very appealing propertie