ﻻ يوجد ملخص باللغة العربية
We present spectropolarimetric imaging observations of the solar corona at low frequencies (80 - 240 MHz) using the Murchison Widefield Array (MWA). These images are the first of their kind, and we introduce an algorithm to mitigate an instrumental artefact by which the total intensity signal contaminates the polarimetric images due to calibration errors. We then survey the range of circular polarization (Stokes V) features detected in over 100 observing runs near solar maximum during quiescent periods. First, we detect around 700 compact polarized sources across our dataset with polarization fractions ranging from less than 0.5% to nearly 100%. These sources exhibit a positive correlation between polarization fraction and total intensity, and we interpret them as a continuum of plasma emission noise storm (Type I burst) continua sources associated with active regions. Second, we report a characteristic bullseye structure observed for many low-latitude coronal holes in which a central polarized component is surrounded by a ring of the opposite sense. The central component does not match the sign expected from thermal bremsstrahlung emission, and we speculate that propagation effects or an alternative emission mechanism may be responsible. Third, we show that the large-scale polarimetric structure at our lowest frequencies is reasonably well-correlated with the line-of-sight (LOS) magnetic field component inferred from a global potential field source surface (PFSS) model. The boundaries between opposite circular polarization signs are generally aligned with polarity inversion lines in the model at a height roughly corresponding to that of the radio limb. This is not true at our highest frequencies, however, where the LOS magnetic field direction and polarization sign are often not straightforwardly correlated.
Low-frequency (80-240 MHz) radio observations of the solar corona are presented using the Murchison Widefield Array (MWA), and several discoveries are reported. The corona is reviewed, followed by chapters on Type III bursts and circularly-polarized
Magnetic loops filled with hot plasma are the main building blocks of the solar corona. Usually they have lengths of the order of the barometric scale height in the corona that is 50 Mm. Previously it has been suggested that miniatu
Flare associated coronal shock waves sometimes interact with solar prominences leading to large amplitude prominence oscillations. Such prominence activation gives us unique opportunity to track time evolution of shock-cloud interaction in cosmic pla
In the present work, we analyze a filament eruption associated with an ICME that arrived at L1 on August 5th, 2011. In multi-wavelength SDO/AIA images, three plasma parcels within the filament were tracked at high-cadence along the solar corona. A no
Coronal jets are transient, collimated eruptions that occur in regions of predominantly open magnetic field in the solar corona. Our understanding of these events has greatly evolved in recent years but several open questions, such as the contributio