ترغب بنشر مسار تعليمي؟ اضغط هنا

The Low-Frequency Solar Corona in Circular Polarization

101   0   0.0 ( 0 )
 نشر من قبل Patrick McCauley
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present spectropolarimetric imaging observations of the solar corona at low frequencies (80 - 240 MHz) using the Murchison Widefield Array (MWA). These images are the first of their kind, and we introduce an algorithm to mitigate an instrumental artefact by which the total intensity signal contaminates the polarimetric images due to calibration errors. We then survey the range of circular polarization (Stokes V) features detected in over 100 observing runs near solar maximum during quiescent periods. First, we detect around 700 compact polarized sources across our dataset with polarization fractions ranging from less than 0.5% to nearly 100%. These sources exhibit a positive correlation between polarization fraction and total intensity, and we interpret them as a continuum of plasma emission noise storm (Type I burst) continua sources associated with active regions. Second, we report a characteristic bullseye structure observed for many low-latitude coronal holes in which a central polarized component is surrounded by a ring of the opposite sense. The central component does not match the sign expected from thermal bremsstrahlung emission, and we speculate that propagation effects or an alternative emission mechanism may be responsible. Third, we show that the large-scale polarimetric structure at our lowest frequencies is reasonably well-correlated with the line-of-sight (LOS) magnetic field component inferred from a global potential field source surface (PFSS) model. The boundaries between opposite circular polarization signs are generally aligned with polarity inversion lines in the model at a height roughly corresponding to that of the radio limb. This is not true at our highest frequencies, however, where the LOS magnetic field direction and polarization sign are often not straightforwardly correlated.



قيم البحث

اقرأ أيضاً

327 - Patrick I. McCauley 2019
Low-frequency (80-240 MHz) radio observations of the solar corona are presented using the Murchison Widefield Array (MWA), and several discoveries are reported. The corona is reviewed, followed by chapters on Type III bursts and circularly-polarized quiescent emission. The second chapter details new Type III burst dynamics. One source component at higher frequencies splits into two at lower frequencies, where the two components rapidly diverge. This is attributed to electron beams traversing a divergent magnetic field configuration, which is supported by extreme ultraviolet jet observations outlining a coronal null point. The third chapter uses Type III burst heights as density probes. Harmonic plasma emission implies ~4x enhancements over background models. This can be explained by electron beams traveling along dense fibers or by propagation effects that elevate apparent source heights. The quiescent corona is compared to model predictions to conclude that propagation effects can largely but not entirely explain the apparent density enhancements. The fourth chapter surveys over 100 spectropolarimetric observing runs. Around 700 compact sources are detected with polarization fractions from less than 0.5% to nearly 100%. They are interpreted as plasma emission noise storm sources down to levels not previously observable. A bullseye structure is reported for coronal holes, where an outer ring surrounds an oppositely-polarized central component that does not match the sign expected of thermal bremsstrahlung. The large-scale polarization structure is shown to be well-correlated with that of a global magnetic field model. The last chapter summarizes results and outlines future work. A preliminary comparison of polarization images to model predictions is shared, along with coronal mass ejection observations revealing a radio arc that is morphologically similar to the white-light structure.
Magnetic loops filled with hot plasma are the main building blocks of the solar corona. Usually they have lengths of the order of the barometric scale height in the corona that is 50 Mm. Previously it has been suggested that miniatu
64 - Takuya Takahashi 2017
Flare associated coronal shock waves sometimes interact with solar prominences leading to large amplitude prominence oscillations. Such prominence activation gives us unique opportunity to track time evolution of shock-cloud interaction in cosmic pla smas. Although the dynamics of interstellar shock-cloud interaction is extensively studied, coronal shock-solar prominence interaction is rarely studied in the context of shock-cloud interaction. Associated with X5.4 class solar flare occurred on 7 March, 2012, a globally propagated coronal shock wave interacted with a polar prominence leading to large amplitude prominence oscillation. In this paper, we studied bulk acceleration and excitation of internal flow of the shocked prominence using three-dimensional MHD simulations. We studied eight magnetohydrodynamic (MHD) simulation runs with different mass density structure of the prominence, and one hydrodynamic simulation run, and compared the result. In order to compare observed motion of activated prominence with corresponding simulation, we also studied prominence activation by injection of triangular shaped coronal shock. We found that magnetic tension force mainly accelerate (and then decelerate) the prominence. The internal flow, on the other hand, is excited during the shock front sweeps through the the prominence and damps almost exponentially. We construct phenomenological model of bulk momentum transfer from shock to the prominence, which agreed quantitatively with all the simulation results. Based on the phenomenological prominence-activation model, we diagnosed physical parameters of coronal shock wave. The estimated energy of the coronal shock is several percent of total energy released during the X5.4 flare.
In the present work, we analyze a filament eruption associated with an ICME that arrived at L1 on August 5th, 2011. In multi-wavelength SDO/AIA images, three plasma parcels within the filament were tracked at high-cadence along the solar corona. A no vel absorption diagnostic technique was applied to the filament material travelling along the three chosen trajectories to compute the column density and temperature evolution in time. Kinematics of the filamentary material were estimated using STEREO/EUVI and STEREO/COR1 observations. The Michigan Ionization Code used inputs of these density, temperature, and speed profiles for the computation of ionization profiles of the filament plasma. Based on these measurements we conclude the core plasma was in near ionization equilibrium, and the ionization states were not frozen-in at the altitudes where they were visible in absorption in AIA images. Additionally, we report that the filament plasma was heterogeneous, and the filamentary material was continuously heated as it expanded in the low solar corona.
Coronal jets are transient, collimated eruptions that occur in regions of predominantly open magnetic field in the solar corona. Our understanding of these events has greatly evolved in recent years but several open questions, such as the contributio n of coronal jets to the solar wind, remain. Here we present an overview of the observations and numerical modeling of coronal jets, followed by a brief description of next-generation simulations that include an advanced description of the energy transfer in the corona (thermodynamic MHD), large spherical computational domains, and the solar wind. These new models will allow us to address some of the open questions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا