ﻻ يوجد ملخص باللغة العربية
Quantum dots optically excited in close proximity to a silver nanowire can launch nanowire surface plasmons. The challenge related to this promising hybrid system is to control the position of nanoemitters on the nanowire. We report on the use of two-photon photopolymerization process to strategically position quantum dots on nanowires at controlled sites. A parametric study of the distance between the quantum dots and the nanowire extremity shows that precise control of the position of the launching sites enables control of light intensity at the wire end, through surface plasmon propagation.
We report on the site-selected growth of bright single InAsP quantum dots embedded within InP photonic nanowire waveguides emitting at telecom wavelengths. We demonstrate a dramatic dependence of the emission rate on both the emission wavelength and
The unique optical and electronic properties of graphene allow one to realize active optical devices. While several types of graphene-based photonic modulators have already been demonstrated, the potential of combining the versatility of graphene wit
We demonstrate that phase-difference between terahertz signals on the source and drain of a field effect transistor (a TeraFET) induces a plasmon-assisted dc current, which is dramatically enhanced in vicinity of plasmonic resonances. We describe a T
Acoustic vibrations at the nanoscale (GHz-THz frequencies) and their interactions with electrons, photons and other excitations are the heart of an emerging field in physics: nanophononics. The design of ultrahigh frequency acoustic-phonon transducer
Thanks to the spontaneous interaction between noble metals and biological scaffolds, nanomaterials with unique features can be achieved following relatively straightforward and cost-efficient synthetic procedures. Here, plasmonic silver nanorings are