ﻻ يوجد ملخص باللغة العربية
The intense research activity on Twin-Field (TF) quantum key distribution (QKD) is motivated by the fact that two users can establish a secret key by relying on single-photon interference in an untrusted node. Thanks to this feature, variants of the protocol have been proven to beat the point-to-point private capacity of a lossy quantum channel. Here we generalize the main idea of the TF-QKD protocol introduced by Curty et al. to the multipartite scenario, by devising a conference key agreement (CKA) where the users simultaneously distill a secret conference key through single-photon interference. The new CKA is better suited to high-loss scenarios than previous multipartite QKD schemes and it employs for the first time a W-class state as its entanglement resource. We prove the protocols security in the finite-key regime and under general attacks. We also compare its performance with the iterative use of bipartite QKD protocols and show that our truly multipartite scheme can be advantageous, depending on the loss and on the state preparation.
Quantum networks will provide multi-node entanglement over long distances to enable secure communication on a global scale. Traditional quantum communication protocols consume pair-wise entanglement, which is sub-optimal for distributed tasks involvi
Conference key agreement (CKA), or multipartite key distribution, is a cryptographic task where more than two parties wish to establish a common secret key. A composition of bipartite quantum key distribution protocols can accomplish this task. Howev
Quantum conference key agreement (CKA) enables key sharing among multiple trusted users with information-theoretic security. Currently, the key rates of most quantum CKA protocols suffer from the limit of the total efficiency among quantum channels.
We show that it is possible to generate a novel single-photon fringe pattern by using two spatially separated identical bi-photon sources. The fringes are similar to the ones observed in a Michelson interferometer and possess certain remarkable prope
Utilizing the advantage of quantum entanglement swapping, a multi-party quantum key agreement protocol with authentication is proposed. In this protocol, a semi-trusted third party is introduced, who prepares Bell states, and sends one particle to mu