ﻻ يوجد ملخص باللغة العربية
Single-shot absorption measurements have been performed using the multi-keV X-rays generated by a laser wakefield accelerator. A 200 TW laser was used to drive a laser wakefield accelerator in a mode which produced broadband electron beams with a maximum energy above 1 GeV and a broad divergence of $approx15$ miliradians FWHM. Betatron oscillations of these electrons generated $1.2pm0.2times10^6$ photons/eV in the 5 keV region, with a signal-to-noise ratio of approximately 300:1. This was sufficient to allow high-resolution XANES measurements at the K-edge of a titanium sample in a single shot. We demonstrate that this source is capable of single-shot, simultaneous measurements of both the electron and ion distributions in matter heated to eV temperatures by comparison with DFT simulations. The unique combination of a high-flux, large bandwidth, few femtosecond duration X-ray pulse synchronised to a high-power laser will enable key advances in the study of ultra-fast energetic processes such as electron-ion equilibration.
We reconstruct spectra of secondary X-rays from a tunable 250-350 MeV laser wakefield electron accelerator from single-shot X-ray depth-energy measurements in a compact (7.5 $times$ 7.5 $times$ 15 cm), modular X-ray calorimeter made of alternating la
We show that the properties of the electron beam and bright x-rays produced by a laser wakefield accelerator can be predicted if the distance over which the laser self-focuses and compresses prior to self-injection is taken into account. A model base
A new method for diagnosing the temporal characteristics of ultrashort electron bunches with linear energy chirp generated from a laser wakefield accelerator is described. When the ionization-injected bunch interacts with the back of the drive laser,
Generation of circularly-polarized (CP) and linearly-polarized (LP) $gamma$-rays via the single-shot interaction of an ultraintense laser pulse with a spin-polarized counterpropagating ultrarelativistic electron beam has been investigated in nonlinea
Betatron radiation from laser wakefield accelerators is an ultrashort pulsed source of hard, synchrotron-like x-ray radiation. It emanates from a centimetre scale plasma accelerator producing GeV level electron beams. In recent years betatron radiati