ﻻ يوجد ملخص باللغة العربية
Following up on recent calculations, we investigate the leading- and next-to-leading order semiclassical approximation to the virial coefficients of a two-species fermion system with a contact interaction. Using the analytic result for the second-order virial coefficient as a renormalization condition, we derive expressions for up to the seventh-order virial coefficient $Delta b_7$. Our results at leading order, though approximate, furnish simple analytic formulas that relate $Delta b_n$ to $Delta b_2$ for arbitrary dimension, providing a glimpse into the behavior of the virial expansion across dimensions and coupling strengths. As an application, we calculate the pressure and Tans contact of the 2D attractive Fermi gas and examine the radius of convergence of the virial expansion as a function of the coupling strength.
Using a leading-order semiclassical approximation, we calculate the third- and fourth-order virial coefficients of nonrelativistic spin-1/2 fermions in a harmonic trapping potential in arbitrary spatial dimensions, and as functions of temperature, tr
We report on recent progress on the splitting functions for the evolution of parton distributions and related quantities, the (lightlike) cusp anomalous dimensions, in perturbative QCD. New results are presented for the four-loop (next-to-next-to-nex
Based on recent developments by the authors a next-to-leading order spin(1)-spin(2) Hamiltonian is derived for the first time. The result is obtained within the canonical formalism of Arnowitt, Deser, and Misner (ADM) utilizing their generalized isot
We determine an approximate expression for the O(alpha_s^3) contribution chi_2 to the kernel of the BFKL equation, which includes all collinear and anticollinear singular contributions. This is derived using recent results on the relation between the
Using a coarse temporal lattice approximation, we calculate the first few terms of the virial expansion of a three-species fermion system with a three-body contact interaction in $d$ spatial dimensions, both in homogeneous space as well as in a harmo