ﻻ يوجد ملخص باللغة العربية
In this short note, we first consider some inequalities for comparison of some algebraic properties of two continuous algebra-multiplications on an arbitrary Banach space and then, as an application, we consider some very basic observations on the space of all continuous algebra-multiplications on a Banach space.
We characterize strong continuity of general operator semigroups on some Lebesgue spaces. In particular, a characterization of strong continuity of weighted composition semigroups on classical Hardy spaces and weighted Bergman spaces with regular wei
Let $A$ be a real commutative Banach algebra with unity. Let $a_0in Asetminus{0}$. Let $mathbb Z a_0:={na_0}_{nin mathbb Z}$. Then, $mathbb Z a_0$ is a discrete subgroup of $A$. For any $nin mathbb Z$, the Frechet derivative of the mapping $$x , in ,
We survey some classical norm inequalities of Hardy, Kallman, Kato, Kolmogorov, Landau, Littlewood, and Rota of the type [ |A f|_{mathcal{X}}^2 leq C |f|_{mathcal{X}} big|A^2 fbig|_{mathcal{X}}, quad f in dombig(A^2big), ] and recall that under excee
We consider the inequalities of Gagliardo-Nirenberg and Sobolev in R^d, formulated in terms of the Laplacian Delta and of the fractional powers D^n := (-Delta)^(n/2) with real n >= 0; we review known facts and present novel results in this area. Afte
We study some fundamental properties of semicocycles over semigroups of self-mappings of a domain in a Banach space. We prove that any semicocycle over a jointly continuous semigroup is itself jointly continuous. For semicocycles over semigroups whic