ﻻ يوجد ملخص باللغة العربية
We introduce the first approach to solve the challenging problem of unsupervised 4D visual scene understanding for complex dynamic scenes with multiple interacting people from multi-view video. Our approach simultaneously estimates a detailed model that includes a per-pixel semantically and temporally coherent reconstruction, together with instance-level segmentation exploiting photo-consistency, semantic and motion information. We further leverage recent advances in 3D pose estimation to constrain the joint semantic instance segmentation and 4D temporally coherent reconstruction. This enables per person semantic instance segmentation of multiple interacting people in complex dynamic scenes. Extensive evaluation of the joint visual scene understanding framework against state-of-the-art methods on challenging indoor and outdoor sequences demonstrates a significant (approx 40%) improvement in semantic segmentation, reconstruction and scene flow accuracy.
Most SLAM algorithms are based on the assumption that the scene is static. However, in practice, most scenes are dynamic which usually contains moving objects, these methods are not suitable. In this paper, we introduce DymSLAM, a dynamic stereo visu
We present an unsupervised adaptation approach for visual scene understanding in unstructured traffic environments. Our method is designed for unstructured real-world scenarios with dense and heterogeneous traffic consisting of cars, trucks, two-and
The rapid progress in 3D scene understanding has come with growing demand for data; however, collecting and annotating 3D scenes (e.g. point clouds) are notoriously hard. For example, the number of scenes (e.g. indoor rooms) that can be accessed and
The ability to decompose scenes in terms of abstract building blocks is crucial for general intelligence. Where those basic building blocks share meaningful properties, interactions and other regularities across scenes, such decompositions can simpli
We develop a Learning Direct Optimization (LiDO) method for the refinement of a latent variable model that describes input image x. Our goal is to explain a single image x with an interpretable 3D computer graphics model having scene graph latent var