ﻻ يوجد ملخص باللغة العربية
Proximity to phase transitions (PTs) is frequently responsible for the largest dielectric susceptibilities in ferroelectrics. The impracticality of using temperature as a control parameter to reach those large responses has motivated the design of solid solutions with phase boundaries between different polar phases at temperatures (typically room temperature) significantly lower than the paraelectric-ferroelectric critical temperature. The flat energy landscapes close to these PTs give rise to polarization rotation under external stimuli, being responsible for the best piezoelectrics so far and a their huge market. But this approach requires complex chemistry to achieve temperature-independent PT boundaries and often involves lead-containing compounds. Here we report that such a bridging state is possible in thin films of chemically simple materials such as BaTiO3. A coexistence of tetragonal, orthorhombic and their bridging low-symmetry phases are shown to be responsible for the continuous vertical polarization rotation, recreating a smear in-transition state and leading to giant temperature-independent dielectric response. These features are distinct from those of single crystals, multi-domain crystals, ceramics or relaxor ferroelectrics, requiring a different description. We believe that other materials can be engineered in a similar way to form a class of ferroelectrics, in which MPB solid solutions are also included, that we propose to coin as transitional ferroelectrics.
The integration of ferromagnetic and ferroelectric materials into hybrid heterostructures yields multifunctional systems with improved or novel functionality. We here report on the structural, electronic and magnetic properties of the ferromagnetic d
We develop a phenomenological thermodynamic theory of ferroelectric BaTiO3 (BT) thin films epitaxially grown on cubic substrates using the Landau-Devonshire eight-order potential. The constructed misfit-temperature phase diagram is asymmetrical. We f
The dielectric properties of NiO thin films grown by pulsed laser deposition have been studied as a function of strain at temperature from 10 to 300 K. Above 150 K, the contribution of space-charge polarization to the dielectric permittivity of NiO f
We have investigated the crystal structure and the ferroelectric properties of BaTiO3 thin films with YBa2Cu3O7-d as the bottom and Au as the top electrode. Epitaxial heterostructures of YBa2Cu3O7-d and BaTiO3 were prepared by dc and rf sputtering, r
Pulsed-laser deposition has been used to grow epitaxial thin films of the giant-dielectric-constant material CaCu_3Ti_4O_{12} on LaAlO_3 and SrTiO_3 substrates with or without various conducting buffer layers. The latter include YBa_2Cu_3O_7, La_{1.8