ترغب بنشر مسار تعليمي؟ اضغط هنا

The effect of valley, spin and band nesting on the electronic properties of gated quantum dots in a single layer of transition metal dichalcogenides (TMDCs)

250   0   0.0 ( 0 )
 نشر من قبل Maciej Bieniek
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present here results of atomistic theory of electrons confined by metallic gates in a single layer of transition metal dichalcogenides. The electronic states are described by the tight-binding model and computed using a computational box including up to million atoms with periodic boundary conditions and parabolic confining potential due to external gates embedded in it. With this methodology applied to MoS2, we find a twofold degenerate energy spectrum of electrons confined in the two non-equivalent K-valleys by the metallic gates as well as six-fold degenerate spectrum associated with Q-valleys. We compare the electron spectrum with the energy levels of electrons confined in GaAs/GaAlAs and in self-assembled quantum dots. We discuss the role of spin splitting and topological moments on the K and Q valley electronic states in quantum dots with sizes comparable to experiment.

قيم البحث

اقرأ أيضاً

We develop a microscopic and atomistic theory of electron spin-based qubits in gated quantum dots in a single layer of transition metal dichalcogenides. The qubits are identified with two degenerate locked spin and valley states in a gated quantum do t. The two-qubit states are accurately described using a multi-million atom tight-binding model solved in wavevector space. The spin-valley locking and strong spin-orbit coupling result in two degenerate states, one of the qubit states being spin-down located at the $+K$ valley of the Brillouin zone, and the other state located at the $-K$ valley with spin up. We describe the qubit operations necessary to rotate the spin-valley qubit as a combination of the applied vertical electric field, enabling spin-orbit coupling in a single valley, with a lateral strongly localized valley-mixing gate.
We study both the intrinsic and extrinsic spin Hall effect in spin-valley coupled monolayers of transition metal dichalcogenides. We find that whereas the skew-scattering contribution is suppressed by the large band gap, the side-jump contribution is comparable to the intrinsic one with opposite sign in the presence of scalar and magnetic scattering. Intervalley scattering tends to suppress the side-jump contribution due to the loss of coherence. By tuning the ratio of intra- to intervalley scattering, the spin Hall conductivity shows a sign change in hole-doped samples. Multiband effect in other doping regime is considered, and it is found that the sign change exists in the heavily hole-doped regime, but not in the electron-doped regime.
In this work, we predict the emergence of the valley Edelstein Effect (VEE), which is an electric-field-induced spin polarization effect, in gated monolayer transition metal dichalcogenides (MTMDs). We found an unconventional valley-dependent respons e in which the spin-polarization is parallel to the applied electric field with opposite spin-polarization generated by opposite valleys. This is in sharp contrast to the conventional Edelstein effect in which the induced spin-polarization is perpendicular to the applied electric field. We identify the origin of VEE as combined effects of conventional Edelstein effect and valley-dependent Berry curvatures induced by coexisting Rashba and Ising SOCs in gated MTMDs. Experimental schemes to detect the VEE are also considered.
The electronic and thermoelectric properties of one to four monolayers of MoS$_{2}$, MoSe$_{2}$, WS$_{2}$, and WSe$_{2}$ are calculated. For few layer thicknesses,the near degeneracies of the conduction band $K$ and $Sigma$ valleys and the valence ba nd $Gamma$ and $K$ valleys enhance the n-type and p-type thermoelectric performance. The interlayer hybridization and energy level splitting determine how the number of modes within $k_BT$ of a valley minimum changes with layer thickness. In all cases, the maximum ZT coincides with the greatest near-degeneracy within $k_BT$ of the band edge that results in the sharpest turn-on of the density of modes. The thickness at which this maximum occurs is, in general, not a monolayer. The transition from few layers to bulk is discussed. Effective masses, energy gaps, power-factors, and ZT values are tabulated for all materials and layer thicknesses.
We study valley-dependent spin transport theoretically in monolayer transition-metal dichalcogenides in which a variety of spin and valley physics are expected because of spin-valley coupling. The results show that the spins are valley-selectively ex cited with appropriate carrier doping and valley polarized spin current (VPSC) is generated. The VPSC leads to the spin-current Hall effect, transverse spin accumulation originating from the Berry curvature in momentum space. The results indicate that spin excitations with spin-valley coupling lead to both valley and spin transport, which is promising for future low-consumption nanodevice applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا