ﻻ يوجد ملخص باللغة العربية
We prove a monomialization theorem for mappings in general classes of infinitely differentiable functions that are called quasianalytic. Examples include Denjoy-Carleman classes (of interest in real analysis), the class of infinitely differentiable functions which are definable in a given polynomially bounded o-minimal structure (in model theory), as well as the classes of real- or complex-analytic functions, and algebraic functions over any field of characteristic zero. The monomialization theorem asserts that a mapping in a quasianalytic class can be transformed to a mapping whose components are monomials with respect to suitable local coordinates, by sequences of simple modifications of the source and target (local blowings-up and power substitutions in the real cases, in general, and local blowings-up alone in the algebraic or analytic cases). Monomialization is a version of resolution of singularities for a mapping. It is not possible, in general, to monomialize by global blowings-up, even in the real analytic case.
The goal of this article is to prove the comparison theorem between algebraic and topological nearby cycles of a morphism without slopes. We prove in particular that for a family of holomorphic functions without slopes, if we iterate comparison isomo
We introduce a novel approach to Bertini irreducibility theorems over an arbitrary field, based on random hyperplane slicing over a finite field. Extending a result of Benoist, we prove that for a morphism $phi colon X to mathbb{P}^n$ such that $X$ i
In this paper we characterize the Blowing-up maps of ordinary singularities for which there exists a natural Gysin morphism, i.e. a bivariant class $theta in Hom_{D(Y)}(Rpi_*mathbb Q_X, mathbb Q_Y)$, compatible with pullback and with restriction to the complement of the singularity.
A theorem of Mumford states that, on complex surfaces, any normal isolated singularity whose link is diffeomorphic to a sphere is actually a smooth point. While this property fails in higher dimensions, McLean asks whether the contact structure that
We show that any fibration of a special compact K{a}hler manifold X onto an Abelian variety has no multiple fibre in codimension one. This statement strengthens and extends previous results of Kawamata and Viehweg when $kappa$(X) = 0. This also corre