ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-copy uncertainty observable inducing a symplectic-invariant uncertainty relation in position and momentum phase space

191   0   0.0 ( 0 )
 نشر من قبل Anaelle Hertz
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We define an uncertainty observable, acting on several replicas of a continuous-variable bosonic state, whose trivial uncertainty lower bound induces nontrivial phase-space uncertainty relations for a single copy of the state. By exploiting the Schwinger representation of angular momenta in terms of bosonic operators, we construct such an observable that is invariant under symplectic transformations (rotation and squeezing in phase space). We first design a two-copy uncertainty observable, which is a discrete-spectrum operator vanishing with certainty if and only if it is applied on (two copies of) any pure Gaussian state centered at the origin. The non-negativity of its variance translates into the Schrodinger-Robertson uncertainty relation. We then extend our construction to a three-copy uncertainty observable, which exhibits additional invariance under displacements (translations in phase space) so that it vanishes on every pure Gaussian state. The resulting invariance under Gaussian unitaries makes this observable a natural tool to measure the phase-space uncertainty -- or the deviation from pure Gaussianity -- of continuous-variable bosonic states. In particular, it suggests that the Shannon entropy of this observable provides a symplectic-invariant entropic measure of uncertainty in position and momentum phase space.

قيم البحث

اقرأ أيضاً

The uncertainty relation for continuous variables due to Byalinicki-Birula and Mycielski expresses the complementarity between two $n$-uples of canonically conjugate variables $(x_1,x_2,cdots x_n)$ and $(p_1,p_2,cdots p_n)$ in terms of Shannon differ ential entropy. Here, we consider the generalization to variables that are not canonically conjugate and derive an entropic uncertainty relation expressing the balance between any two $n$-variable Gaussian projective measurements. The bound on entropies is expressed in terms of the determinant of a matrix of commutators between the measured variables. This uncertainty relation also captures the complementarity between any two incompatible linear canonical transforms, the bound being written in terms of the corresponding symplectic matrices in phase space. Finally, we extend this uncertainty relation to Renyi entropies and also prove a covariance-based uncertainty relation which generalizes Robertson relation.
Heisenbergs uncertainty principle has recently led to general measurement uncertainty relations for quantum systems: incompatible observables can be measured jointly or in sequence only with some unavoidable approximation, which can be quantified in various ways. The relative entropy is the natural theoretical quantifier of the information loss when a `true probability distribution is replaced by an approximating one. In this paper, we provide a lower bound for the amount of information that is lost by replacing the distributions of the sharp position and momentum observables, as they could be obtained with two separate experiments, by the marginals of any smeared joint measurement. The bound is obtained by introducing an entropic error function, and optimizing it over a suitable class of covariant approximate joint measurements. We fully exploit two cases of target observables: (1) $n$-dimensional position and momentum vectors; (2) two components of position and momentum along different directions. In (1), we connect the quantum bound to the dimension $n$; in (2), going from parallel to orthogonal directions, we show the transition from highly incompatible observables to compatible ones. For simplicity, we develop the theory only for Gaussian states and measurements.
Quantum uncertainty relations are formulated in terms of relative entropy between distributions of measurement outcomes and suitable reference distributions with maximum entropy. This type of entropic uncertainty relation can be applied directly to o bservables with either discrete or continuous spectra. We find that a sum of relative entropies is bounded from above in a nontrivial way, which we illustrate with some examples.
Bounded uncertainty relations provide the minimum value of the uncertainty assuming some additional information on the state. We derive analytically an uncertainty relation bounded by a pair of constraints, those of purity and Gaussianity. In a limit ing case this uncertainty relation reproduces the purity-bounded derived by V I Manko and V V Dodonov and the Gaussianity-bounded one [Phys. Rev. A 86, 030102R (2012)].
We introduce a method of quantum tomography for a continuous variable system in position and momentum space. We consider a single two-level probe interacting with a quantum harmonic oscillator by means of a class of Hamiltonians, linear in position a nd momentum variables, during a tunable time span. We study two cases: the reconstruction of the wavefunctions of pure states and the direct measurement of the density matrix of mixed states. We show that our method can be applied to several physical systems where high quantum control can be experimentally achieved.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا