ترغب بنشر مسار تعليمي؟ اضغط هنا

Combined Emerging Capabilities for Near-Earth Objects (NEOs)

74   0   0.0 ( 0 )
 نشر من قبل Stefanie Milam
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S.N. Milam




اسأل ChatGPT حول البحث

Assess the joint capabilities of emerging telescopes for near-Earth objects (NEOs) survey and characterization, and what they will add to the current capabilities or replace. NASA telescopes in prime mission, in development, or under study, and requested for this assessment, include: - The Transiting Exoplanet Survey Satellite (TESS) - The James Webb Space Telescope (JWST) - The Wide Field Infrared Survey Telescope (WFIRST) - The Near-Earth Object Camera (NEOCam). Also requested for this assessment is the Large Synoptic Survey Telescope (LSST), an 8.4-meter ground-based telescope in development by the National Science Foundation and Department of Energy (DOE), with the capability to discover and catalogue NEOs.

قيم البحث

اقرأ أيضاً

We present an analytic model to estimate the capabilities of space missions dedicated to the search for biosignatures in the atmosphere of rocky planets located in the habitable zone of nearby stars. Relations between performance and mission paramete rs such as mirror diameter, distance to targets, and radius of planets, are obtained. Two types of instruments are considered: coronagraphs observing in the visible, and nulling interferometers in the thermal infrared. Missions considered are: single-pupil coronagraphs with a 2.4 m primary mirror, and formation flying interferometers with 4 x 0.75 m collecting mirrors. The numbers of accessible planets are calculated as a function of {eta}earth. When Kepler gives its final estimation for {eta}earth, the model will permit a precise assessment of the potential of each instrument. Based on current estimations, {eta}earth = 10% around FGK stars and 50% around M stars, the coronagraph could study in spectroscopy only ~1.5 relevant planets, and the interferometer ~14.0. These numbers are obtained under the major hypothesis that the exozodiacal light around the target stars is low enough for each instrument. In both cases, a prior detection of planets is assumed and a target list established. For the long-term future, building both types of spectroscopic instruments, and using them on the same targets, will be the optimal solution because they provide complementary information. But as a first affordable space mission, the interferometer looks the more promising in term of biosignature harvest.
We report the discovery of bright, fast, radio flashes lasting tens of seconds with the AARTFAAC high-cadence all-sky survey at 60 MHz. The vast majority of these coincide with known, bright radio sources that brighten by factors of up to 100 during such an event. We attribute them to magnification events induced by plasma near the Earth, most likely in the densest parts of the ionosphere. They can occur both in relative isolation, during otherwise quiescent ionospheric conditions, and in large clusters during more turbulent ionospheric conditions. Using a toy model, we show that the likely origin of the more extreme (up to a factor of 100 or so) magnification events likely originate in the region of peak electron density in the ionosphere, at an altitude of 300-400 km. Distinguishing these events from genuine astrophysical transients is imperative for future surveys searching for low frequency radio transient at timescales below a minute.
Thermal infrared observations are the most effective way to measure asteroid diameter and albedo for a large number of near-Earth objects. Major surveys like NEOWISE, NEOSurvey, ExploreNEOs, and NEOLegacy find a small fraction of high albedo objects that do not have clear analogs in the current meteorite population. About 8% of Spitzer-observed near-Earth objects have nominal albedo solutions greater than 0.5. This may be a result of lightcurve variability leading to an incorrect estimate of diameter or inaccurate absolute visual magnitudes. For a sample of 23 high albedo NEOs we do not find that their shapes are significantly different from the McNeill et al. (2019) near-Earth object shape distribution. We performed a Monte Carlo analysis on 1505 near-Earth objects observed by Spitzer, sampling the visible and thermal fluxes of all targets to determine the likelihood of obtaining a high albedo erroneously. Implementing the McNeill shape distribution for near-Earth objects, we provide an upper-limit on the geometric albedo of 0.5+/-0.1 for the near-Earth population.
We report a detection of a faint near-Earth asteroid (NEA), which was done using our synthetic tracking technique and the CHIMERA instrument on the Palomar 200-inch telescope. This asteroid, with apparent magnitude of 23, was moving at 5.97 degrees p er day and was detected at a signal-to-noise ratio (SNR) of 15 using 30 sec of data taken at a 16.7 Hz frame rate. The detection was confirmed by a second observation one hour later at the same SNR. The asteroid moved 7 arcseconds in sky over the 30 sec of integration time because of its high proper motion. The synthetic tracking using 16.7 Hz frames avoided the trailing loss suffered by conventional techniques relying on 30-sec exposure, which would degrade the surface brightness of image on CCD to an approximate magnitude of 25. This detection was a result of our 12-hour blind search conducted on the Palomar 200-inch telescope over two nights on September 11 and 12, 2013 scanning twice over six 5.0 deg x 0.043 deg fields. The fact that we detected only one NEA, is consistent with Harriss estimation of the asteroid population distribution, which was used to predict the detection of 1--2 asteroids of absolute magnitude H=28--31 per night. The design of experiment, data analysis method, and algorithms for estimating astrometry are presented. We also demonstrate a milli-arcsecond astrometry using observations of two bright asteroids with the same system on Apr 3, 2013. Strategies of scheduling observations to detect small and fast-moving NEAs with the synthetic tracking technique are discussed.
The near-Earth object (NEO) population is a window into the original conditions of the protosolar nebula, and has the potential to provide a key pathway for the delivery of water and organics to the early Earth. In addition to delivering the crucial ingredients for life, NEOs can pose a serious hazard to humanity since they can impact the Earth. To properly quantify the impact risk, physical properties of the NEO population need to be studied. Unfortunately, NEOs have a great variation in terms of mitigation-relevant quantities (size, albedo, composition, etc.) and less than 15% of them have been characterized to date. There is an urgent need to undertake a comprehensive characterization of smaller NEOs (D<300m) given that there are many more of them than larger objects. One of the main aims of the NEOShield-2 project (2015--2017), financed by the European Community in the framework of the Horizon 2020 program, is therefore to retrieve physical properties of a wide number of NEOs in order to design impact mitigation missions and assess the consequences of an impact on Earth. We carried out visible photometry of NEOs, making use of the DOLORES instrument at the Telescopio Nazionale Galileo (TNG, La Palma, Spain) in order to derive visible color indexes and the taxonomic classification for each target in our sample. We attributed for the first time the taxonomical complex of 67 objects obtained during the first year of the project. While the majority of our sample belong to the S-complex, carbonaceous C-complex NEOs deserve particular attention. These NEOs can be located in orbits that are challenging from a mitigation point of view, with high inclination and low minimum orbit intersection distance (MOID). In addition, the lack of carbonaceous material we see in the small NEO population might not be due to an observational bias alone.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا