ﻻ يوجد ملخص باللغة العربية
Trinity is a proposed air-shower imaging system optimized for the detection of earth-skimming ultrahigh energy tau neutrinos with energies between $10^7$ GeV and $10^{10}$ GeV. Trinity will pursue three major scientific objectives. 1) It will narrow in on possible source classes responsible for the astrophysical neutrino flux measured by IceCube. 2) It will help find the sources of ultrahigh-energy cosmic rays (UHECR) and understand the composition of UHECR. 3) It will test fundamental neutrino physics at the highest energies. Trinity uses the imaging technique, which is well established and successfully used by the very high-energy gamma-ray community (CTA, H.E.S.S., MAGIC, and VERITAS) and the UHECR community (Telescope Array, Pierre Auger)
Efforts to detect ultrahigh energy neutrinos are driven by several objectives: What is the origin of astrophysical neutrinos detected with IceCube? What are the sources of ultrahigh energy cosmic rays? Do the ANITA detected events point to new physic
We discuss the acceptance and sensitivity of a small air-shower imaging system to detect earth-skimming ultrahigh-energy tau neutrinos. The instrument we study is located on top of a mountain and has an azimuthal field of view of $360^circ$. We find
Earth-skimming neutrinos are those which travel through the Earths crust at a shallow angle. For Ultra-High-Energy (E > 1 PeV; UHE) earth-skimming tau neutrinos, there is a high-probability that the tau lepton created by a neutrino-Earth interaction
The Experimental complex NEVOD includes several different setups for studying various components of extensive air showers (EAS) in the energy range from 10^10 to 10^18 eV. The NEVOD-EAS array for detection of the EAS electron-photon component began i
The aim of the Air Microwave Yield (AMY) experiment is to investigate the Molecular Bremsstrahlung Radiation (MBR) emitted from an electron beam induced air-shower. The measurements have been performed with a 510 MeV electron beam at the Beam Test Fa