ﻻ يوجد ملخص باللغة العربية
Let $C_t$ be a cycle of length $t$, and let $P_1,ldots,P_t$ be $t$ polygon chains. A polygon flower $F=(C_t; P_1,ldots,P_t)$ is a graph obtained by identifying the $i$th edge of $C_t$ with an edge $e_i$ that belongs to an end-polygon of $P_i$ for $i=1,ldots,t$. In this paper, we first give an explicit formula for the sandpile group $S(F)$ of $F$, which shows that the structure of $S(F)$ only depends on the numbers of spanning trees of $P_i$ and $P_i/ e_i$, $i=1,ldots,t$. By analyzing the arithmetic properties of those numbers, we give a simple formula for the minimum number of generators of $S(F)$, by which a sufficient and necessary condition for $S(F)$ being cyclic is obtained. Finally, we obtain a classification of edges that generate the sandpile group. Although the main results concern only a class of outerplanar graphs, the proof methods used in the paper may be of much more general interest. We make use of the graph structure to find a set of generators and a relation matrix $R$, which has the same form for any $F$ and has much smaller size than that of the (reduced) Laplacian matrix, which is the most popular relation matrix used to study the sandpile group of a graph.
Let $C_{k_1}, ldots, C_{k_n}$ be cycles with $k_igeq 2$ vertices ($1le ile n$). By attaching these $n$ cycles together in a linear order, we obtain a graph called a polygon chain. By attaching these $n$ cycles together in a cyclic order, we obtain a
The majority of graphs whose sandpile groups are known are either regular or simple. We give an explicit formula for a family of non-regular multi-graphs called thick cycles. A thick cycle graph is a cycle where multi-edges are permitted. Its sandpil
Baker and Wang define the so-called Bernardi action of the sandpile group of a ribbon graph on the set of its spanning trees. This potentially depends on a fixed vertex of the graph but it is independent of the base vertex if and only if the ribbon s
We reformulate several known results about continued fractions in combinatorial terms. Among them the theorem of Conway and Coxeter and that of Series, both relating continued fractions and triangulations. More general polygon dissections appear when
Lattice theory has been believed to resist classical computers and quantum computers. Since there are connections between traditional lattices and graphic lattices, it is meaningful to research graphic lattices. We define the so-called ice-flower sys