ترغب بنشر مسار تعليمي؟ اضغط هنا

Transit timing variations in the WASP-4 planetary system

168   0   0.0 ( 0 )
 نشر من قبل John Southworth
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Transits in the planetary system WASP-4 were recently found to occur 80s earlier than expected in observations from the TESS satellite. We present 22 new times of mid-transit that confirm the existence of transit timing variations, and are well fitted by a quadratic ephemeris with period decay dP/dt = -9.2 +/- 1.1 ms/yr. We rule out instrumental issues, stellar activity and the Applegate mechanism as possible causes. The light-time effect is also not favoured due to the non-detection of changes in the systemic velocity. Orbital decay and apsidal precession are plausible but unproven. WASP-4b is only the third hot Jupiter known to show transit timing variations to high confidence. We discuss a variety of observations of this and other planetary systems that would be useful in improving our understanding of WASP-4 in particular and orbital decay in general.



قيم البحث

اقرأ أيضاً

346 - Andras Pal 2011
In this Letter we present observations of recent HAT-P-13b transits. The combined analysis of published and newly obtained transit epochs shows evidence for significant transit timing variations since the last publicly available ephemerides. Variatio n of transit timings result in a sudden switch of transit times. The detected full range of TTV spans ~0.015 days, which is significantly more than the known TTV events exhibited by hot Jupiters. If we have detected a periodic process, its period should be at least ~3 years because there are no signs of variations in the previous observations. This argument makes unlikely that the measured TTV is due to perturbations by HAT-P-13c.
Transit timing analysis may be an effective method of discovering additional bodies in extrasolar systems which harbour transiting exoplanets. The deviations from the Keplerian motion, caused by mutual gravitational interactions between planets, are expected to generate transit timing variations of transiting exoplanets. In 2009 we collected 9 light curves of 8 transits of the exoplanet WASP-10b. Combining these data with published ones, we found that transit timing cannot be explained by a constant period but by a periodic variation. Simplified three-body models which reproduce the observed variations of timing residuals were identified by numerical simulations. We found that the configuration with an additional planet of mass of $sim$0.1 $M_{rm{J}}$ and orbital period of $sim$5.23 d, located close to the outer 5:3 mean motion resonance, is the most likely scenario. If the second planet is a transiter, the estimated flux drop will be $sim$0.3 per cent and can be observable with a ground-based telescope. Moreover, we present evidence that the spots on the stellar surface and rotation of the star affect the radial velocity curve giving rise to spurious eccentricity of the orbit of the first planet. We argue that the orbit of WASP-10b is essentially circular. Using the gyrochronology method, the host star was found to be $270 pm 80$ Myr old. This young age can explain the large radius reported for WASP-10b.
We have observed 7 new transits of the `hot Jupiter WASP-5b using a 61 cm telescope located in New Zealand, in order to search for transit timing variations (TTVs) which can be induced by additional bodies existing in the system. When combined with o ther available photometric and radial velocity (RV) data, we find that its transit timings do not match a linear ephemeris; the best fit chi^2 values is 32.2 with 9 degrees of freedom which corresponds to a confidence level of 99.982 % or 3.7 sigma. This result indicates that excess variations of transit timings has been observed, due either to unknown systematic effects or possibly to real TTVs. The TTV amplitude is as large as 50 s, and if this is real, it cannot be explained by other effects than that due to an additional body or bodies. From the RV data, we put an upper limit on the RV amplitude caused by the possible secondary body (planet) as 21 m s^{-1}, which corresponds to its mass of 22-70 M_{Earth} over the orbital period ratio of the two planets from 0.2 to 5.0. From the TTVs data, using the numerical simulations, we place more stringent limits down to 2 M_{Earth} near 1:2 and 2:1 mean motion resonances (MMRs) with WASP-5b at the 3 sigma level, assuming that the two planets are co-planer. We also put an upper limit on excess of Trojan mass as 43 M_{Earth} (3 sigma) using both RV and photometric data. We also find that if the possible secondary planet has non- or a small eccentricity, its orbit would likely be near low-order MMRs. Further follow-up photometric and spectroscopic observations will be required to confirm the reality of the TTV signal, and results such as these will provide important information for the migration mechanisms of planetary systems.
We report nine new transit epochs of the extrasolar planet, observed in the Bessell-I band with SOAR at the Cerro Pachon Observatory and with the SMARTS 1-m Telescope at CTIO, between August 2008 and October 2009. The new transits have been combined with all previously published transit data for this planet to provide a new Transit Timing Variations (TTVs) analysis of its orbit. We find no evidence of TTVs RMS variations larger than 1 min over a 3 year time span. This result discards the presence of planets more massive than about 5 M_earth, 1 M_earth and 2 M_earth around the 1:2, 5:3 and 2:1 orbital resonances. These new detection limits exceed by ~5-30 times the limits imposed by current radial velocity observations in the Mean Motion Resonances of this system. Our search for the variation of other parameters, such as orbital inclination and transit depth also yields negative results over the total time span of the transit observations. This result supports formation theories that predict a paucity of planetary companions to Hot Jupiters.
The hot-Jupiter WASP-10b was reported by Maciejewski et al. (2011a,b) to show transit timing variations (TTV) with an amplitude of ~ 3.5 minutes. These authors proposed that the observed TTVs were caused by a 0.1 MJup perturbing companion with an orb ital period of ~ 5.23 d, and hence, close to the outer 5:3 mean motion resonance with WASP-10b. To test this scenario, we present eight new transit light curves of WASP-10b obtained with the Faulkes Telescope North and the Liverpool Telescope. The new light curves, together with 22 previously published ones, were modelled with a Markov-Chain Monte-Carlo transit fitting code. (...) Our homogeneously derived transit times do not support the previous claimed TTV signal, which was strongly dependent on 2 previously published transits that have been incorrectly normalised. Nevertheless, a linear ephemeris is not a statistically good fit to the transit times of WASP-10b. We show that the observed transit time variations are due to spot occultation features or systematics. We discuss and exemplify the effects of occultation spot features in the measured transit times and show that despite spot occultation during egress and ingress being difficult to distinguish in the transit light curves, they have a significant effect in the measured transit times. We conclude that if we account for spot features, the transit times of WASP-10 are consistent with a linear ephemeris with the exception of one transit (epoch 143) which is a partial transit. Therefore, there is currently no evidence for the existence of a companion to WASP-10b. Our results support the lack of TTVs of hot-Jupiters reported for the Kepler sample.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا