ترغب بنشر مسار تعليمي؟ اضغط هنا

Peculiar motions of the gas at the centre of the barred galaxy UGC 4056

49   0   0.0 ( 0 )
 نشر من قبل Igor Zinchenko A.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We derive the circular velocity curves of the gaseous and stellar discs of UGC 4056, a giant barred galaxy with an active galactic nucleus (AGN). We analyse UGC 4056 using the 2D spectroscopy obtained within the framework of the Mapping Nearby Galaxies at APO (MaNGA) survey. Using images and the colour index g-r from the Sloan Digital Sky Survey (SDSS), we determined the tilt of the galaxy, which allows us to conclude that the galaxy rotates clockwise with trailing spiral arms. We found that the gas motion at the central part of the UGC 4056 shows peculiar features. The rotation velocity of the gaseous disc shows a bump within around three kiloparsecs while the rotation velocity of the stellar disc falls smoothly to zero with decreasing galactocentric distance. We demonstrate that the peculiar radial velocities in the central part of the galaxy may be caused by the inflow of the gas towards the nucleus of the galaxy. The unusual motion of the gas takes place at the region with the AGN-like radiation and can be explained by the gas response to the bar potential.

قيم البحث

اقرأ أيضاً

The cosmological numerical simulations tell us that accretion of external metal-poor gas drives star-formation (SF) in galaxy disks. One the best pieces of observational evidence supporting this prediction is the existence of low metallicity star-for ming regions in relatively high metallicity host galaxies. The SF is thought to be fed by metal-poor gas recently accreted. Since the gas accretion is stochastic, there should be galaxies with all the properties of a host but without the low metallicity starburst. These galaxies have not been identified yet. The exception may be UGC 2162, a nearby ultra-diffuse galaxy (UDG) which combines low surface brightness and relatively high metallicity. We confirm the high metallicity of UGC 2162 (12 + log(O/H) = 8.52+0.27-0.24 ) using spectra taken with the 10-m GTC telescope. GC2162 has the stellar mass, metallicity, and star-formation rate (SFR) surface density expected for a host galaxy in between outbursts. This fact suggests a physical connection between some UDGs and metal-poor galaxies, which may be the same type of object in a different phase of the SF cycle. UGC 2162 is a high-metallicity outlier of the mass-metallicity relation, a property shared by the few UDGs with known gas-phase metallicity.
The study of 21cm line observations of atomic hydrogen allows detailed insight into the kinematics of spiral galaxies. We use sensitive high-resolution VLA data from The HI Nearby Galaxy Survey (THINGS) to search for radial gas flows primarily in the outer parts (up to $3times r_{25}$) of ten nearby spiral galaxies. Inflows are expected to replenish the gas reservoir and fuel star formation under the assumption that galaxies evolve approximately in steady state. We carry out a detailed investigation of existing tilted ring fitting schemes and discover systematics that can hamper their ability to detect signatures of radial flows. We develop a new Fourier decomposition scheme that fits for rotational and radial velocities and simultaneously determines position angle and inclination as a function of radius. Using synthetic velocity fields we show that our novel fitting scheme is less prone to such systematic errors and that it is well suited to detect radial inflows in disks. We apply our fitting scheme to ten THINGS galaxies and find clear indications of, at least partly previously unidentified, radial gas flows, in particular for NGC 2403 and NGC 3198 and to a lesser degree for NGC 7331, NGC 2903 and NGC 6946. The mass flow rates are of the same order but usually larger than the star formation rates. At least for these galaxies a scenario in which continuous mass accretion feeds star formation seems plausible. The other galaxies show a more complicated picture with either no clear inflow, outward motions or complex kinematic signatures.
We present 0farcs{14}-resolution Atacama Large Millimeter/submillimeter Array (ALMA) CO(2$-$1) observations of the circumnuclear gas disk in UGC 2698, a local compact galaxy. The disk exhibits regular rotation with projected velocities rising to 450 km s$^{-1}$ near the galaxy center. We fit gas-dynamical models to the ALMA data cube, assuming the CO emission originates from a dynamically cold, thin disk, and measured the mass of the supermassive black hole (BH) in UGC 2698 to be $M_{mathrm{BH}} = (2.46 pm{0.07}$ [$1sigma$ stat] $^{+0.70}_{-0.78}$ [sys])$times 10^9$ $M_odot$. UGC 2698 is part of a sample of nearby early-type galaxies that are plausible $zsim2$ red nugget relics. Previous stellar-dynamical modeling for three galaxies in the sample found BH masses consistent with the BH mass$-$stellar velocity dispersion ($M_{mathrm{BH}}-sigma_star$) relation but over-massive relative to the BH mass$-$bulge luminosity ($M_{mathrm{BH}}-L_{mathrm{bul}}$) correlation, suggesting that BHs may gain the majority of their mass before their host galaxies. However, UGC 2698 is consistent with both $M_{mathrm{BH}}-sigma_star$ and $M_{mathrm{BH}}-L_{mathrm{bul}}$. As UGC 2698 has the largest stellar mass and effective radius in the local compact galaxy sample, it may have undergone more recent mergers that brought it in line with the BH scaling relations. Alternatively, given that the three previously-measured compact galaxies are outliers from $M_{mathrm{BH}}-L_{mathrm{bul}}$, while UGC 2698 is not, there may be significant scatter at the poorly sampled high-mass end of the relation. Additional gas-dynamical $M_{mathrm{BH}}$ measurements for the compact galaxy sample will improve our understanding of BH$-$galaxy co-evolution.
The centre of our Milky Way harbours the closest candidate for a supermassive black hole. The source is thought to be powered by radiatively inefficient accretion of gas from its environment. This form of accretion is a standard mode of energy supply for most galactic nuclei. X-ray measurements have already resolved a tenuous hot gas component from which it can be fed. However, the magnetization of the gas, a crucial parameter determining the structure of the accretion flow, remains unknown. Strong magnetic fields can influence the dynamics of the accretion, remove angular momentum from the infalling gas, expel matter through relativistic jets and lead to the observed synchrotron emission. Here we report multi-frequency measurements with several radio telescopes of a newly discovered pulsar close to the Galactic Centre and show that its unusually large Faraday rotation indicates a dynamically relevant magnetic field near the black hole. If this field is accreted down to the event horizon it provides enough magnetic flux to explain the observed emission from the black hole, from radio to X-rays.
282 - V. Casasola 2013
The formation of the first virialized structures in overdensities dates back to ~9 Gyr ago, i.e. in the redshift range z ~ 1.4 - 1.6. Some models of structure formation predict that the star formation activity in clusters was high at that epoch, impl ying large reservoirs of cold molecular gas. Aiming at finding a trace of this expected high molecular gas content in primeval clusters, we searched for the 12CO(2-1) line emission in the most luminous active galactic nucleus (AGN) of the cluster around the radio galaxy 7C 1756+6520 at z ~ 1.4, one of the farthest spectroscopic confirmed clusters. This AGN, called AGN.1317, is located in the neighbourhood of the central radio galaxy at a projected distance of ~780 kpc. The IRAM Plateau de Bure Interferometer was used to investigate the molecular gas quantity in AGN.1317, observing the 12CO(2-1) emission line. We detect CO emission in an AGN belonging to a galaxy cluster at z ~ 1.4. We measured a molecular gas mass of 1.1 x 10^10 Msun, comparable to that found in submillimeter galaxies. In optical images, AGN.1317 does not seem to be part of a galaxy interaction or merger.We also derived the nearly instantaneous star formation rate (SFR) from Halpha flux obtaining a SFR ~65 Msun/yr. This suggests that AGN.1317 is actively forming stars and will exhaust its reservoir of cold gas in ~0.2-1.0 Gyr.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا