ﻻ يوجد ملخص باللغة العربية
Electronic charge order is a symmetry breaking state in high-$T_mathrm{c}$ cuprate superconductors. In scanning tunneling microscopy, the detected charge-order-induced modulation is an electronic response of the charge order. For an overdoped (Bi,Pb)$_2$Sr$_2$CuO$_{6+x}$ sample, we apply scanning tunneling microscopy to explore local properties of the charge order. The ordering wavevector is non-dispersive with energy, which can be confirmed and determined. By extracting its order-parameter field, we identify dislocations in the stripe structure of the electronic modulation, which correspond to topological defects with an integer winding number of $pm 1$. Through differential conductance maps over a series of reduced energies, the development of different response of the charge order is observed and a spatial evolution of topological defects is detected. The intensity of charge-order-induced modulation increases with energy and reaches its maximum when approaching the pseudogap energy. In this evolution, the topological defects decrease in density and migrate in space. Furthermore, we observe appearance and disappearance of closely spaced pairs of defects as energy changes. Our experimental results could inspire further studies of the charge order in both high-$T_mathrm{c}$ cuprate superconductors and other charge density wave materials.
In high-temperature cuprate superconductors, the anti-ferromagnetic spin fluctuations are thought to have a very important role in naturally producing an attractive interaction between the electrons in the $d$-wave channel. The connection between sup
The pseudogap (PG) state and its related intra-unit-cell symmetry breaking remain the focus in the research of cuprate superconductors. Although the nematicity has been studied in Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$, especially underdoped samples, its
We report an ARPES investigation of the circular dichroism in the first Brillouin zone (BZ) of under- and overdoped Pb-Bi2212 samples. We show that the dichroism has opposite signs for bonding and antibonding components of the bilayer-split CuO-band
Interlayer van der Waals (vdW) coupling is generic in two-dimensional materials such as graphene and transition metal dichalcogenides, which can induce very low-energy phonon modes. Using high-resolution inelastic hard x-ray scattering, we uncover th
Charge modulations are considered as a leading competitor of high-temperature superconductivity in the underdoped cuprates, and their relationship to Fermi surface reconstructions and to the pseudogap state is an important subject of current research