ﻻ يوجد ملخص باللغة العربية
Rapidly decaying slow magnetoacoustic waves are regularly observed in the solar coronal structures, offering a promising tool for a seismological diagnostics of the coronal plasma, including its thermodynamical properties. The effect of damping of standing slow magnetoacoustic oscillations in the solar coronal loops is investigated accounting for the field-aligned thermal conductivity and a wave-induced misbalance between radiative cooling and some unspecified heating rates. The non-adiabatic terms were allowed to be arbitrarily large, corresponding to the observed values. The thermal conductivity was taken in its classical form, and a power-law dependence of the heating function on the density and temperature was assumed. The analysis was conducted in the linear regime and in the infinite magnetic field approximation. The wave dynamics is found to be highly sensitive to the characteristic time scales of the thermal misbalance. Depending on certain values of the misbalance time scales three regimes of the wave evolution were identified, namely the regime of a suppressed damping, enhanced damping where the damping rate drops down to the observational values, and acoustic over-stability. The specific regime is determined by the dependences of the radiative cooling and heating functions on thermodynamical parameters of the plasma in the vicinity of the perturbed thermal equilibrium. The comparison of the observed and theoretically derived decay times and oscillation periods allows us to constrain the coronal heating function. For typical coronal parameters, the observed properties of standing slow magnetoacoustic oscillations could be readily reproduced with a reasonable choice of the heating function.
Slow magnetoacoustic waves are omnipresent in both natural and laboratory plasma systems. The wave-induced misbalance between plasma cooling and heating processes causes the amplification or attenuation, and also dispersion, of slow magnetoacoustic w
The processes of the coronal plasma heating and cooling were previously shown to significantly affect the dynamics of slow magnetoacoustic (MA) waves, causing amplification or attenuation, and also dispersion. However, the entropy mode is also excite
Condensations in the more than 10^6 K hot corona of the Sun are commonly observed in the extreme ultraviolet (EUV). While their contribution to the total solar EUV radiation is still a matter of debate, these condensations certainly provide a valuabl
The rapid damping of slow magnetoacoustic waves in the solar corona has been extensively studied in previous years. Most studies suggest that thermal conduction is a dominant contributor to this damping, albeit with a few exceptions. Employing extrem
Slow magnetoacoustic waves are routinely observed in astrophysical plasma systems such as the solar corona. As a slow wave propagates through a plasma, it modifies the equilibrium quantities of density, temperature, and magnetic field. In the corona