ﻻ يوجد ملخص باللغة العربية
In 1882 J.J. Sylvester already proved, that the number of different ways to partition a positive integer into consecutive positive integers exactly equals the number of odd divisors of that integer (see [1]). We will now develop an interesting statement about triangular numbers, those positive integers which can be partitioned into consecutive numbers beginning at 1. For every partition of a triangular number n into consecutive numbers we can partition the sequence of numbers beginning at 1, adding up to n again, such that every part of this partition adds up to exactly one number of the chosen partition of n.
For a real number $t$, let $r_ell(t)$ be the total weight of all $t$-large Schr{o}der paths of length $ell$, and $s_ell(t)$ be the total weight of all $t$-small Schr{o}der paths of length $ell$. For constants $alpha, beta$, in this article we derive
A defensive $k$-alliance in a graph is a set $S$ of vertices with the property that every vertex in $S$ has at least $k$ more neighbors in $S$ than it has outside of $S$. A defensive $k$-alliance $S$ is called global if it forms a dominating set. In
We settle the existence of certain anti-magic cubes using combinatorial block designs and graph decompositions to align a handful of small examples.
We present in this work a heuristic expression for the density of prime numbers. Our expression leads to results which possesses approximately the same precision of the Riemanns function in the domain that goes from 2 to 1010 at least. Instead of usi
Let $pi_n$ be a uniformly chosen random permutation on $[n]$. Using an analysis of the probability that two overlapping consecutive $k$-permutations are order isomorphic, we show that the expected number of distinct consecutive patterns in $pi_n$ is