ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep inspection: an electrical distribution pole parts study via deep neural networks

112   0   0.0 ( 0 )
 نشر من قبل Liangchen Liu
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Electrical distribution poles are important assets in electricity supply. These poles need to be maintained in good condition to ensure they protect community safety, maintain reliability of supply, and meet legislative obligations. However, maintaining such a large volumes of assets is an expensive and challenging task. To address this, recent approaches utilise imagery data captured from helicopter and/or drone inspections. Whilst reducing the cost for manual inspection, manual analysis on each image is still required. As such, several image-based automated inspection systems have been proposed. In this paper, we target two major challenges: tiny object detection and extremely imbalanced datasets, which currently hinder the wide deployment of the automatic inspection. We propose a novel two-stage zoom-in detection method to gradually focus on the object of interest. To address the imbalanced dataset problem, we propose the resampling as well as reweighting schemes to iteratively adapt the model to the large intra-class variation of major class and balance the contributions to the loss from each class. Finally, we integrate these components together and devise a novel automatic inspection framework. Extensive experiments demonstrate that our proposed approaches are effective and can boost the performance compared to the baseline methods.

قيم البحث

اقرأ أيضاً

Although deep learning models perform remarkably well across a range of tasks such as language translation and object recognition, it remains unclear what high-level logic, if any, they follow. Understanding this logic may lead to more transparency, better model design, and faster experimentation. Recent machine learning research has leveraged statistical methods to identify hidden units that behave (e.g., activate) similarly to human understandable logic, but those analyses require considerable manual effort. Our insight is that many of those studies follow a common analysis pattern, which we term Deep Neural Inspection. There is opportunity to provide a declarative abstraction to easily express, execute, and optimize them. This paper describes DeepBase, a system to inspect neural network behaviors through a unified interface. We model logic with user-provided hypothesis functions that annotate the data with high-level labels (e.g., part-of-speech tags, image captions). DeepBase lets users quickly identify individual or groups of units that have strong statistical dependencies with desired hypotheses. We discuss how DeepBase can express existing analyses, propose a set of simple and effective optimizations to speed up a standard Python implementation by up to 72x, and reproduce recent studies from the NLP literature.
Prostate cancer is one of the most common forms of cancer and the third leading cause of cancer death in North America. As an integrated part of computer-aided detection (CAD) tools, diffusion-weighted magnetic resonance imaging (DWI) has been intens ively studied for accurate detection of prostate cancer. With deep convolutional neural networks (CNNs) significant success in computer vision tasks such as object detection and segmentation, different CNNs architectures are increasingly investigated in medical imaging research community as promising solutions for designing more accurate CAD tools for cancer detection. In this work, we developed and implemented an automated CNNs-based pipeline for detection of clinically significant prostate cancer (PCa) for a given axial DWI image and for each patient. DWI images of 427 patients were used as the dataset, which contained 175 patients with PCa and 252 healthy patients. To measure the performance of the proposed pipeline, a test set of 108 (out of 427) patients were set aside and not used in the training phase. The proposed pipeline achieved area under the receiver operating characteristic curve (AUC) of 0.87 (95% Confidence Interval (CI): 0.84-0.90) and 0.84 (95% CI: 0.76-0.91) at slice level and patient level, respectively.
We apply generative adversarial convolutional neural networks to the problem of style transfer to underdrawings and ghost-images in x-rays of fine art paintings with a special focus on enhancing their spatial resolution. We build upon a neural archit ecture developed for the related problem of synthesizing high-resolution photo-realistic image from semantic label maps. Our neural architecture achieves high resolution through a hierarchy of generators and discriminator sub-networks, working throughout a range of spatial resolutions. This coarse-to-fine generator architecture can increase the effective resolution by a factor of eight in each spatial direction, or an overall increase in number of pixels by a factor of 64. We also show that even just a few examples of human-generated image segmentations can greatly improve -- qualitatively and quantitatively -- the generated images. We demonstrate our method on works such as Leonardos Madonna of the carnation and the underdrawing in his Virgin of the rocks, which pose several special problems in style transfer, including the paucity of representative works from which to learn and transfer style information.
Magnetic resonance image (MRI) in high spatial resolution provides detailed anatomical information and is often necessary for accurate quantitative analysis. However, high spatial resolution typically comes at the expense of longer scan time, less sp atial coverage, and lower signal to noise ratio (SNR). Single Image Super-Resolution (SISR), a technique aimed to restore high-resolution (HR) details from one single low-resolution (LR) input image, has been improved dramatically by recent breakthroughs in deep learning. In this paper, we introduce a new neural network architecture, 3D Densely Connected Super-Resolution Networks (DCSRN) to restore HR features of structural brain MR images. Through experiments on a dataset with 1,113 subjects, we demonstrate that our network outperforms bicubic interpolation as well as other deep learning methods in restoring 4x resolution-reduced images.
Mathematical morphology is a theory and technique to collect features like geometric and topological structures in digital images. Given a target image, determining suitable morphological operations and structuring elements is a cumbersome and time-c onsuming task. In this paper, a morphological neural network is proposed to address this problem. Serving as a nonlinear feature extracting layer in deep learning frameworks, the efficiency of the proposed morphological layer is confirmed analytically and empirically. With a known target, a single-filter morphological layer learns the structuring element correctly, and an adaptive layer can automatically select appropriate morphological operations. For practical applications, the proposed morphological neural networks are tested on several classification datasets related to shape or geometric image features, and the experimental results have confirmed the high computational efficiency and high accuracy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا