ترغب بنشر مسار تعليمي؟ اضغط هنا

On the origin of the gamma-ray emission from Omega Centauri: Milisecond pulsars and dark matter annihilation

86   0   0.0 ( 0 )
 نشر من قبل Alma Xochitl Gonz\\'alez-Morales
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore two possible scenarios to explain the observed gamma-ray emission associated with the atypical globular cluster Omega-Centauri: emission from millisecond pulsars (MSP) and dark matter (DM) annihilation. In the first case the total number of MSPs needed to produce the gamma-ray flux is compatible with the known (but not confirmed) MSP candidates observed in X-rays. A DM interpretation is motivated by the possibility of Omega-Centauri being the remnant core of an ancient dwarf galaxy hosting a surviving DM component. At least two annihilation channels, light quarks and muons, can plausibly produce the observed gama-ray spectrum. We outline constraints on the parameter space of DM mass versus the product of the pair-annihilation cross section and integrated squared DM density (the so-called J-factor). We translate upper limits on the dark matter content of Omega-Centauri into lower limits on the annihilation cross section. This shows s-wave annihilation into muons to be inconsistent with CMB observations, while a small window for annihilation into light quarks is allowed. Further analysis of Omega-Centauris internal kinematics, and/or additional information on the resident MSP population will yield much stronger constraints and shed light about the origin of this otherwise mysterious gamma-ray source.

قيم البحث

اقرأ أيضاً

The origin of the extragalactic $gamma$-ray background (EGB) has been debated for some time. { The EGB comprises the $gamma$-ray emission from resolved and unresolved extragalactic sources, such as blazars, star-forming galaxies and radio galaxies, a s well as radiation from truly diffuse processes.} This letter focuses on the blazar source class, the most numerous detected population, and presents an updated luminosity function and spectral energy distribution model consistent with the blazar observations performed by the {it Fermi} Large Area Telescope (LAT). We show that blazars account for 50$^{+12}_{-11}$,% of the EGB photons ($>$0.1,GeV), and that {it Fermi}-LAT has already resolved $sim$70,% of this contribution. Blazars, and in particular low-luminosity hard-spectrum nearby sources like BL Lacs, are responsible for most of the EGB emission above 100,GeV. We find that the extragalactic background light, which attenuates blazars high-energy emission, is responsible for the high-energy cut-off observed in the EGB spectrum. Finally, we show that blazars, star-forming galaxies and radio galaxies can naturally account for the amplitude and spectral shape of the background in the 0.1--820,GeV range, leaving only modest room for other contributions. This allows us to set competitive constraints on the dark-matter annihilation cross section.
At a distance of 50 kpc and with a dark matter mass of $sim10^{10}$ M$_{odot}$, the Large Magellanic Cloud (LMC) is a natural target for indirect dark matter searches. We use five years of data from the Fermi Large Area Telescope (LAT) and updated mo dels of the gamma-ray emission from standard astrophysical components to search for a dark matter annihilation signal from the LMC. We perform a rotation curve analysis to determine the dark matter distribution, setting a robust minimum on the amount of dark matter in the LMC, which we use to set conservative bounds on the annihilation cross section. The LMC emission is generally very well described by the standard astrophysical sources, with at most a $1-2sigma$ excess identified near the kinematic center of the LMC once systematic uncertainties are taken into account. We place competitive bounds on the dark matter annihilation cross section as a function of dark matter particle mass and annihilation channel.
We construct empirical models of the diffuse gamma-ray background toward the Galactic Center. Including all known point sources and a template of emission associated with interactions of cosmic rays with molecular gas, we show that the extended emiss ion observed previously in the Fermi Large Area Telescope data toward the Galactic Center is detected at high significance for all permutations of the diffuse model components. However, we find that the fluxes and spectra of the sources in our model change significantly depending on the background model. In particular, the spectrum of the central Sgr A$^ast$ source is less steep than in previous works and the recovered spectrum of the extended emission has large systematic uncertainties, especially at lower energies. If the extended emission is interpreted to be due to dark matter annihilation, we find annihilation into pure $b$-quark and $tau$-lepton channels to be statistically equivalent goodness of fits. In the case of the pure $b$-quark channel, we find a dark matter mass of $39.4left(^{+3.7}_{-2.9}rm stat.right)left(pm 7.9rm sys.right)rm GeV$, while a pure $tau^{+} tau^{-}$-channel case has an estimated dark matter mass of $9.43left(^{+0.63}_{-0.52}rm stat.right)(pm 1.2rm sys.) GeV$. Alternatively, if the extended emission is interpreted to be astrophysical in origin such as due to unresolved millisecond pulsars, we obtain strong bounds on dark matter annihilation, although systematic uncertainties due to the dependence on the background models are significant.
Dark matter (DM) is the most abundant material in the Universe, but has so far been detected only via its gravitational effects. Several theories suggest that pairs of DM particles can annihilate into a flash of light at gamma-ray wavelengths. While gamma-ray emission has been observed from environments where DM is expected to accumulate, such as the centre of our Galaxy, other high energy sources can create a contaminating astrophysical gamma-ray background, thus making DM detection difficult. In principle, dwarf galaxies around the Milky Way are a better place to look -- they contain a greater fraction of DM with no astrophysical gamma-ray background -- but they are too distant for gamma-rays to have been seen. A range of observational evidence suggests that Omega Centauri (omega Cen or NGC 5139), usually classified as the Milky Ways largest globular cluster, is really the core of a captured and stripped dwarf galaxy. Importantly, Omega Cen is ten times closer to us than known dwarfs. Here we show that not only does Omega Cen contain DM with density as high as compact dwarf galaxies, but also that it emits gamma-rays with an energy spectrum matching that expected from the annihilation of DM particles with mass 31$pm$4 GeV (68% confidence limit). No astrophysical sources have been found that would otherwise explain Omega Cens gamma-ray emission, despite deep multi-wavelength searches. We anticipate our results to be the starting point for even deeper radio observations of Omega Cen. If multi-wavelength searches continue to find no astrophysical explanations, this pristine, nearby clump of DM will become the best place to study DM interactions through forces other than gravity.
The $gamma$-ray and neutrino emissions from dark matter (DM) annihilation in galaxy clusters are studied. After about one year operation of Fermi-LAT, several nearby clusters are reported with stringent upper limits of GeV $gamma$-ray emission. We us e the Fermi-LAT upper limits of these clusters to constrain the DM model parameters. We find that the DM model distributed with substructures predicted in cold DM (CDM) scenario is strongly constrained by Fermi-LAT $gamma$-ray data. Especially for the leptonic annihilation scenario which may account for the $e^{pm}$ excesses discovered by PAMELA/Fermi-LAT/HESS, the constraint on the minimum mass of substructures is of the level $10^2-10^3$ M$_{odot}$, which is much larger than that expected in CDM picture, but is consistent with a warm DM scenario. We further investigate the sensitivity of neutrino detections of the clusters by IceCube. It is found that neutrino detection is much more difficult than $gamma$-rays. Only for very heavy DM ($sim 10$ TeV) together with a considerable branching ratio to line neutrinos the neutrino sensitivity is comparable with that of $gamma$-rays.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا