ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-dimensional hole transport in ion-gated diamond surfaces: A brief review

71   0   0.0 ( 0 )
 نشر من قبل Erik Piatti
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electrically-conducting diamond is a promising candidate for next-generation electronic, thermal and electrochemical applications. One of the major obstacles towards its exploitation is the strong degradation that some of its key physical properties - such as the carrier mobility and the superconducting transition temperature - undergo upon the introduction of disorder. This makes the two-dimensional hole gas induced at its surface by electric field-effect doping particularly interesting from both a fundamental and an applied perspective, since it strongly reduces the amount of extrinsic disorder with respect to the standard boron substitution. In this short review, we summarize the main results achieved so far in controlling the electric transport properties of different field-effect doped diamond surfaces via the ionic gating technique. We analyze how ionic gating can tune their conductivity, carrier density and mobility, and drive the different surfaces across the insulator-to-metal transition. We review their strongly orientation-dependent magnetotransport properties, with a particular focus on the gate-tunable spin-orbit coupling shown by the (100) surface. Finally, we discuss the possibility of field-induced superconductivity in the (110) and (111) surfaces as predicted by density functional theory calculations.

قيم البحث

اقرأ أيضاً

Nanoscrolls are papyrus-like nanostructures which present unique properties due to their open ended morphology. These properties can be exploited in a plethora of technological applications, leading to the design of novel and interesting devices. Dur ing the past decade, significant advances in the synthesis and characterization of these structures have been made, but many challenges still remain. In this mini review we provide an overview on their history, experimental synthesis methods, basic properties and application perspectives.
One-dimensional Majorana modes are predicated to form in Josephson junctions based on three-dimensional topological insulators (TIs). While observations of supercurrents in Josephson junctions made on bulk-insulating TI samples are recently reported, the Fraunhofer patters observed in such TI-based Josephson junctions, which sometimes present anomalous features, are still not well understood. Here we report our study of highly gate-tunable TI-based Josephson junctions made of one of the most bulk-insulating TI materials, BiSbTeSe2, and Al. The Fermi level can be tuned by gating across the Dirac point, and the high transparency of the Al/BiSbTeSe2 interface is evinced by a high characteristic voltage and multiple Andreev reflections with peak indices reaching 12. Anomalous Fraunhofer patterns with missing lobes were observed in the entire range of gate voltage. We found that, by employing an advanced fitting procedure to use the maximum entropy method in a Monte Carlo algorithm, the anomalous Fraunhofer patterns are explained as a result of inhomogeneous supercurrent distributions on the TI surface in the junction. Besides establishing a highly promising fabrication technology, this work clarifies one of the important open issues regarding TI-based Josephson junctions.
We review theoretical and experimental highlights in transport in two-dimensional materials focussing on key developments over the last five years. Topological insulators are finding applications in magnetic devices, while Hall transport in doped sam ples and the general issue of topological protection remain controversial. In transition metal dichalcogenides valley-dependent electrical and optical phenomena continue to stimulate state-of-the-art experiments. In Weyl semimetals the properties of Fermi arcs are being actively investigated. A new field, expected to grow in the near future, focuses on the non-linear electrical and optical responses of topological materials, where fundamental questions are once more being asked about the intertwining roles of the Berry curvature and disorder scattering. In topological superconductors the quest for chiral superconductivity, Majorana fermions and topological quantum computing is continuing apace.
We report on the realization and top-gating of a two-dimensional electron system in a nuclear spin free environment using 28Si and 70Ge source material in molecular beam epitaxy. Electron spin decoherence is expected to be minimized in nuclear spin-f ree materials, making them promising hosts for solid-state based quantum information processing devices. The two-dimensional electron system exhibits a mobility of 18000 cm2/Vs at a sheet carrier density of 4.6E11 cm-2 at low temperatures. Feasibility of reliable gating is demonstrated by transport through split-gate structures realized with palladium Schottky top-gates which effectively control the two-dimensional electron system underneath. Our work forms the basis for the realization of an electrostatically defined quantum dot in a nuclear spin free environment.
Gated molybdenum disulphide (MoS2) exhibits a rich phase diagram upon increasing electron doping, including a superconducting phase, a polaronic reconstruction of the bandstructure, and structural transitions away from the 2H polytype. The average ti me between two charge-carrier scattering events - the scattering lifetime - is a key parameter to describe charge transport and obtain physical insight in the behavior of such a complex system. In this work, we combine the solution of the Boltzmann transport equation (based on ab-initio density functional theory calculations of the electronic bandstructure) with the experimental results concerning the charge-carrier mobility, in order to determine the scattering lifetime in gated MoS2 nanolayers as a function of electron doping and temperature. From these dependencies, we assess the major sources of charge-carrier scattering upon increasing band filling, and discover two narrow ranges of electron doping where the scattering lifetime is strongly suppressed. We indentify the opening of additional intervalley scattering channels connecting the simultaneously-filled K/K and Q/Q valleys in the Brillouin zone as the source of these reductions, which are triggered by the two Lifshitz transitions induced by the filling of the high-energy Q/Q valleys upon increasing electron doping.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا