ترغب بنشر مسار تعليمي؟ اضغط هنا

Exchange biased Anomalous Hall Effect driven by frustration in a magnetic Kagome lattice

127   0   0.0 ( 0 )
 نشر من قبل Ella Lachman
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Co3Sn2S2 is a ferromagnetic Weyl semimetal that has been the subject of intense scientific interest due to its large anomalous Hall effect. We show that the coupling of this materials topological properties to its magnetic texture leads to a strongly exchange biased anomalous Hall effect. We argue that this is likely caused by the coexistence of ferromagnetism and spin glass phases, the latter being driven by the geometric frustration intrinsic to the Kagome network of magnetic ions.

قيم البحث

اقرأ أيضاً

104 - Enke Liu , Yan Sun , Nitesh Kumar 2017
Magnetic Weyl semimetals with broken time-reversal symmetry are expected to generate strong intrinsic anomalous Hall effects, due to their large Berry curvature. Here, we report a magnetic Weyl semimetal candidate Co3Sn2S2 with a quasi-two-dimensiona l crystal structure consisting of stacked Kagome lattices. This lattice provides an excellent platform for hosting exotic quantum topological states. We observe a negative magnetoresistance that is consistent with the chiral anomaly expected from the presence of Weyl fermions close to the Fermi level. The anomalous Hall conductivity is robust against both increased temperature and charge conductivity, which corroborates the intrinsic Berry-curvature mechanism in momentum space. Owing to the low carrier density in this material and the significantly enhanced Berry curvature from its band structure, the anomalous Hall conductivity and the anomalous Hall angle simultaneously reach 1130 S cm-1 and 20%, respectively, an order of magnitude larger than typical magnetic systems. Combining the Kagome-lattice structure and the long-range out-of-plane ferromagnetic order of Co3Sn2S2, we expect that this material is an excellent candidate for observation of the quantum anomalous Hall state in the two-dimensional limit.
The electronic anomalous Hall effect (AHE), where charge carriers acquire a velocity component orthogonal to an applied electric field, is one of the most fundamental and widely studied phenomena in physics. There are several different AHE mechanisms known, and material examples are highly sought after, however in the highly conductive (skew scattering) regime the focus has centered around ferromagnetic metals. Here we report the observation of a giant extrinsic AHE in KV$_3$Sb$_5$, an exfoliable, Dirac semimetal with a Kagome layer of Vanadium atoms. Although there has been no reports of magnetic ordering down to 0.25 K, the anomalous Hall conductivity (AHC) reaches $approx$ 15,507 $Omega^{-1}$cm$^{-1}$ with an anomalous Hall ratio (AHR) of $approx$ 1.8$ %$; an order of magnitude larger than Fe. Defying expectations from skew scattering theory, KV$_3$Sb$_5$ shows an enhanced skew scattering effect that scales quadratically, not linearly, with the longitudinal conductivity ($sigma_{xx}$), opening the possibility of reaching an anomalous Hall angle (AHA) of 90$^{circ}$ in metals; an effect thought reserved for quantum anomalous Hall insulators. This observation raises fundamental questions about the AHE and opens a new frontier for AHE (and correspondingly SHE) exploration, stimulating investigation in a new direction of materials, including metallic geometrically frustrated magnets, spin-liquid candidates, and cluster magnets.
Kagome magnets are believed to have numerous exotic physical properties due to the possible interplay between lattice geometry, electron correlation and band topology. Here, we report the large anomalous Hall effect in the kagome ferromagnet LiMn$_6$ Sn$_6$, which has a Curie temperature of 382 K and easy plane along with the kagome lattice. At low temperatures, unsaturated positive magnetoresistance and opposite signs of ordinary Hall coefficient for $rho_{xz}$ and $rho_{yx}$ indicate the coexistence of electrons and holes in the system. A large intrinsic anomalous Hall conductivity of 380 $Omega^{-1}$ cm$^{-1}$, or 0.44 $e^2/h$ per Mn layer, is observed in $sigma_{xy}^A$. This value is significantly larger than those in other $R$Mn$_6$Sn$_6$ ($R$ = rare earth elements) kagome compounds. Band structure calculations show several band crossings, including a spin-polarized Dirac point at the K point, close to the Fermi energy. The calculated intrinsic Hall conductivity agrees well with the experimental value, and shows a maximum peak near the Fermi energy. We attribute the large anomalous Hall effect in LiMn$_6$Sn$_6$ to the band crossings closely located near the Fermi energy.
We report a combined theoretical and experimental investigation of magnetic proximity and Hall transport in Pt/Cr bilayers. Density functional theory indicates that an interfacial magnetization can be induced in the Pt layer and a strong magnetocryst alline anisotropy with an easy axis out of plane arises in the antiferromagnet. A signal ascribed to the anomalous Hall effect is detected and associated to the interface between Pt and Cr layers. We show that this effect originates from the combination of proximity-induced magnetization and a nontrivial topology of the band structure at the interface.
268 - N. Lebedev , M. Stehno , A. Rana 2020
The Anomalous Hall Effect (AHE) is an important quantity in determining the properties and understanding the behavior of the two-dimensional electron system forming at the interface of SrTiO3-based oxide heterostructures. The occurrence of AHE is oft en interpreted as a signature of ferromagnetism, but it is becoming more and more clear that also paramagnets may contribute to AHE. We studied the influence of magnetic ions by measuring intermixed LaAlO3/GdTiO3/SrTiO3 at temperatures below 10 K. We find that, as function of gate voltage, the system undergoes a Lifshitz transition, while at the same time an onset of AHE is observed. However, we do not observe clear signs of ferromagnetism. We argue the AHE to be due to the change in Rashba spin-orbit coupling at the Lifshitz transition and conclude that also paramagnetic moments which are easily polarizable at low temperatures and high magnetic filds lead to the presence of AHE, which needs to be taken into account when extracting carrier densities and mobilities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا