ﻻ يوجد ملخص باللغة العربية
The symmetric sparse matrix-vector multiplication (SymmSpMV) is an important building block for many numerical linear algebra kernel operations or graph traversal applications. Parallelizing SymmSpMV on todays multicore platforms with up to 100 cores is difficult due to the need to manage conflicting updates on the result vector. Coloring approaches can be used to solve this problem without data duplication, but existing coloring algorithms do not take load balancing and deep memory hierarchies into account, hampering scalability and full-chip performance. In this work, we propose the recursive algebraic coloring engine (RACE), a novel coloring algorithm and open-source library implementation, which eliminates the shortcomings of previous coloring methods in terms of hardware efficiency and parallelization overhead. We describe the level construction, distance-k coloring, and load balancing steps in RACE, use it to parallelize SymmSpMV, and compare its performance on 31 sparse matrices with other state-of-the-art coloring techniques and Intel MKL on two modern multicore processors. RACE outperforms all other approaches substantially and behaves in accordance with the Roofline model. Outliers are discussed and analyzed in detail. While we focus on SymmSpMV in this paper, our algorithm and software is applicable to any sparse matrix operation with data dependencies that can be resolved by distance-k coloring.
Sparse matrix-vector multiplication (spMVM) is the dominant operation in many sparse solvers. We investigate performance properties of spMVM with matrices of various sparsity patterns on the nVidia Fermi class of GPGPUs. A new padded jagged diagonals
Sparse matrix-vector multiplication (SpMV) is a fundamental building block for numerous applications. In this paper, we propose CSR5 (Compressed Sparse Row 5), a new storage format, which offers high-throughput SpMV on various platforms including CPU
Generalized Sparse Matrix-Matrix Multiplication (SpGEMM) is a ubiquitous task in various engineering and scientific applications. However, inner product based SpGENN introduces redundant input fetches for mismatched nonzero operands, while outer prod
Important workloads, such as machine learning and graph analytics applications, heavily involve sparse linear algebra operations. These operations use sparse matrix compression as an effective means to avoid storing zeros and performing unnecessary c
With the emergence of cloud computing services, computationally weak devices (Clients) can delegate expensive tasks to more powerful entities (Servers). This raises the question of verifying a result at a lower cost than that of recomputing it. This