ﻻ يوجد ملخص باللغة العربية
The white paper discusses Arecibo Observatorys plan for facility improvements and activities over the next decade. The facility improvements include: (a) improving the telescope surface, pointing and focusing to achieve superb performance up to ~12.5 GHz; (b) equip the telescope with ultrawide-band feeds; (c) upgrade the instrumentation with a 4 GHz bandwidth high dynamic range digital link and a universal backend and (d) augment the VLBI facility by integrating the 12m telescope for phase referencing. These upgrades to the Arecibo telescope are critical to keep the national facility in the forefront of research in radio astronomy while maintaining its dominance in radar studies of near-Earth asteroids, planets and satellites. In the next decade, the Arecibo telescope will play a synergistic role with the upcoming facilities such as ngVLA, SKA and the now commissioned FAST telescope. Further, the observatory will be actively engaged in mentoring and training programs for students from a diverse background.
Over the past century, major advances in astronomy and astrophysics have been largely driven by improvements in instrumentation and data collection. With the amassing of high quality data from new telescopes, and especially with the advent of deep an
Over the past decade, research in resolved stellar populations has made great strides in exploring the nature of dark matter, in unraveling the star formation, chemical enrichment, and dynamical histories of the Milky Way and nearby galaxies, and in
Astrophotonics is the application of versatile photonic technologies to channel, manipulate, and disperse guided light from one or more telescopes to achieve scientific objectives in astronomy in an efficient and cost-effective way. The developments
The Arecibo Observatory (AO) is a multidisciplinary research and education facility that is recognized worldwide as a leading facility in astronomy, planetary, and atmospheric and space sciences. AOs cornerstone research instrument was the 305-m Will
We propose an experiment, the Cosmic Accelerometer, designed to yield velocity precision of $leq 1$ cm/s with measurement stability over years to decades. The first-phase Cosmic Accelerometer, which is at the scale of the Astro2020 Small programs, wi